当前位置: 首页 > news >正文

GPT实战系列-一种构建LangChain自定义Tool工具的简单方法

GPT实战系列-一种构建LangChain自定义Tool工具的简单方法

LLM大模型:

GPT实战系列-探究GPT等大模型的文本生成

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-大话LLM大模型训练

随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像“人工智能”。

如何管理这些模块呢?

LangChain在这方面发挥重要作用。LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。

from langchain.llms import OpenAI
llm = OpenAI(openai_api_key="...")

用@tool 构建自定义的tools

LangChain可以连接到自己定义的工具,也可以连接到内嵌的tool提供商。这里介绍一种简单的构造方法。

定义引用需要用的模块:

from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, StructuredTool, tool

自带的工具并不能解决我们面临的问题,就需要自己构造自己的tools,怎么构造呢?

tool装饰器是一种简单的方法,工具的name就是函数名称,以下你可以看到tool需要的参数。

定义一个简单返回字符串的搜索工具,为了简单起见,并没有实现真正搜索。

# 使用tool装饰器
@tool
def search(query: str) -> str:""" Look up things online."""return "Wellcome LangChain! This is a search tool example."print(search.name)
print(search.description)
print(search.args)

这会得到类似这样的输出,表明工具的属性参数:

search
search(query: str) -> str - Look up things online.
{'query': {'title': 'Query', 'type': 'string'}}

当我们测试工具时,例如随便输入字符串:

print(search.invoke("test"))

都得到类似的输出:

Wellcome LangChain! This is a search tool example.

LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关文章:

GPT实战系列-一种构建LangChain自定义Tool工具的简单方法

GPT实战系列-一种构建LangChain自定义Tool工具的简单方法 LLM大模型: GPT实战系列-探究GPT等大模型的文本生成 GPT实战系列-Baichuan2等大模型的计算精度与量化 GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF …...

【Docker】Memcached 容器化部署

Memcached环境标准软件基于Bitnami Memcached 构建。当前版本为1.6.24 你可以通过轻云UC部署工具直接安装部署,也可以手动按如下文档操作,该项目已经全面开源,可以从如下环境获取 配置文件地址: https://gitee.com/qingplus/qingcloud-platf…...

Langchain-Chatchat本地搭建ChatGLM3模型和提取PDF内容

文章目录 1、软件要求2、安装CUDA2.1、安装gcc2.2、安装CUDA 3、安装Anaconda33.1、下载Anaconda33.2、创建python虚拟环境 4、部署系统4.1、下载源码4.2、安装依赖4.3、下载模型4.4、初始化配置和知识库4.4.1、初始化配置4.4.2、初始化知识库 4.5、运行4.6、运行4.6.1、启动4.…...

案例分析篇03:一篇文章搞定软考设计模式考点(2024年软考高级系统架构设计师冲刺知识点总结系列文章)

专栏系列文章推荐: 2024高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12593400.html 【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2024年软考高级系统架构设计师冲刺知识点总结-案例分析篇-…...

套接字的地址结构,IP地址转换函数,网络编程的接口

目录 一、套接字的地址结构 1.1 通用socket地址结构 1.2 专用socket地址结构 1.2.1 tcp协议族 1.2.3 IP协议族 二、IP地址转换函数 三、网络编程接口 3.1 socket() 3.2 bind() 3.3 listen() 3.4 accept() 3.5 connect() 3.6 close() 3.7 recv()、send() 3.8 recv…...

Java回顾总结--RandomAccessFile和NIO

目录 一、RandomAccessFile1.1 为什么要有RandomAccessFile?1.2 常用方法简介1.3 RandomAccessFile 特点和优势1.3.1 既可以读也可以写1.3.2 可以指定位置读写 1.4 示例 二、NIONIO使用示例 一、RandomAccessFile 1.1 为什么要有RandomAccessFile? Ran…...

2024年3月第15届蓝桥杯青少组STEMA考试C++中高级真题试卷

第15届蓝桥杯青少组STEMA考试C中高级真题试卷(2024年3月) 题目总数:11 总分数:400 选择题 第 1 题 单选题 (110010)2(c3)16的结果是( )。 A. (240)10 B. (11110101)2 C. (366)8 D. (f6)16 第 2 题 单选题 …...

Hyperf AOP 和 注解

注解 (hyperf.wiki) AOP 面向切面编程 (hyperf.wiki) 切面 定义切面(Aspect) 根据官方教程定义一个切面。可以指定类、方法、参数和注解上生效。 <?php namespace App\Aspect;use App\Service\SomeClass; use App\Annotation\SomeAnnotation; use Hyperf\Di\Annotatio…...

【C++】string类(介绍、常用接口)

&#x1f308;个人主页&#xff1a;秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343&#x1f525; 系列专栏&#xff1a;http://t.csdnimg.cn/eCa5z 目录 string类的常用接口说明 string类对象的常见构造 ​编辑 string字符串的遍历&#xff08;迭代器&#xf…...

SpringBoot项目中同时支持https和http协议

实用干货&#xff01;看壹哥如何在SpringBoot项目中同时支持https和http协议_springboot http htpps共存-CSDN博客...

三大排序:冒泡、选择、插入

冒泡排序&#xff1a; 冒泡排序&#xff08;Bubble Sort&#xff09;是一种简单的排序算法。它通过比较相邻元素的大小&#xff0c;并交换它们的位置&#xff0c;使较大&#xff08;或较小&#xff09;的元素逐渐“浮”到数组的一端&#xff0c;从而实现排序的目的。 下面是冒…...

Android中MultiDex优化

MultiDex基本思路 当一个Dex文件太肥的时候(方法数目太多、文件太大)&#xff0c;在打包或在安装或运行apk也会出问题。 解决方法就是将这个硕大的Dex文件拆分成若干个小的Dex文件。 刚好一个ClassLoader可以有多个DexFile。 MultiDex主要性能瓶颈 解压缩和Dex优化&#xff08;…...

MySQL 8.0 的执行计划(EXPLAIN)

MySQL 8.0 的执行计划&#xff08;也称为“EXPLAIN”计划&#xff09;是数据库优化器为 SQL 查询生成的步骤序列。解读执行计划可以帮助数据库管理员&#xff08;DBA&#xff09;和开发者理解查询如何执行&#xff0c;识别潜在的性能问题&#xff0c;并据此优化查询。 下面是如…...

leetcode——二叉树问题汇总

leetcode 144. 二叉树的前序遍历 ①递归法&#xff1a; /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* TreeNode(int val,…...

Android基础开发-饿汉式申请权限

1、案例&#xff0c;打开app时&#xff0c;就要申请权限 直接在onCreateView中申请所有权限就可&#xff0c;然后在选择的回调里边判断申请的结果 package com.example.client;import android.Manifest; import android.content.Intent; import android.content.pm.PackageMa…...

java Day7 正则表达式|异常

文章目录 1、正则表达式1.1 常用1.2 字符串匹配&#xff0c;提取&#xff0c;分割 2、异常2.1 运行时异常2.2 编译时异常2.3 自定义异常2.3.1 自定义编译时异常2.3.2 自定义运行时异常 1、正则表达式 就是由一些特定的字符组成&#xff0c;完成一个特定的规则 可以用来校验数据…...

Python算法题集_搜索二维矩阵

Python算法题集_搜索二维矩阵 题74&#xff1a;搜索二维矩阵1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【矩阵展开为列表二分法】2) 改进版一【行*列区间二分法】3) 改进版二【第三方模块】 4. 最优算法5. 相关资源 本文为Python算法题集之…...

学习笔记:顺序表和链表(一、顺序表)

首先来个导言&#xff1a; 1.数组的优势&#xff1a;下标的随机访问&#xff0c;物理空间连续。数组指针用[ ]或者 * , 结构体指针用 - > 2.书写习惯 test.c写出主体框架 QelList.c写出结构体、头文件、函数声明 QelList.c写出函数的实现 3.挪动&#xff1a;如果从前…...

Midjourney从入门到实战:图像生成命令及参数详解

目录 0 专栏介绍1 Midjourney Bot常用命令2 Midjourney绘图指令格式3 Midjourney绘图指令参数3.1 模型及版本3.2 画面比例3.3 风格化3.4 图片质量3.5 混乱值3.6 随机数种子3.7 重复贴图3.8 停止3.8 垫图权重3.9 提示词权重分割 0 专栏介绍 &#x1f525;Midjourney是目前主流的…...

C语言分析基础排序算法——插入排序

目录 插入排序 直接插入排序 希尔排序 希尔排序基本思路解析 希尔排序优化思路解析 完整希尔排序文件 插入排序 直接插入排序 所谓直接插入排序&#xff0c;即每插入一个数据和之前的数据进行大小比较&#xff0c;如果较大放置在后面&#xff0c;较小放置在前面&#x…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

Linux 下 DMA 内存映射浅析

序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存&#xff0c;但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程&#xff0c;可以参考这篇文章&#xff0c;我觉得写的非常…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...