GPT实战系列-一种构建LangChain自定义Tool工具的简单方法
GPT实战系列-一种构建LangChain自定义Tool工具的简单方法
LLM大模型:
GPT实战系列-探究GPT等大模型的文本生成
GPT实战系列-Baichuan2等大模型的计算精度与量化
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-Baichuan2本地化部署实战方案
GPT实战系列-大话LLM大模型训练
随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像“人工智能”。
如何管理这些模块呢?
LangChain在这方面发挥重要作用。LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。
from langchain.llms import OpenAI
llm = OpenAI(openai_api_key="...")
用@tool 构建自定义的tools
LangChain可以连接到自己定义的工具,也可以连接到内嵌的tool提供商。这里介绍一种简单的构造方法。
定义引用需要用的模块:
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, StructuredTool, tool
自带的工具并不能解决我们面临的问题,就需要自己构造自己的tools,怎么构造呢?
tool装饰器是一种简单的方法,工具的name就是函数名称,以下你可以看到tool需要的参数。
定义一个简单返回字符串的搜索工具,为了简单起见,并没有实现真正搜索。
# 使用tool装饰器
@tool
def search(query: str) -> str:""" Look up things online."""return "Wellcome LangChain! This is a search tool example."print(search.name)
print(search.description)
print(search.args)
这会得到类似这样的输出,表明工具的属性参数:
search
search(query: str) -> str - Look up things online.
{'query': {'title': 'Query', 'type': 'string'}}
当我们测试工具时,例如随便输入字符串:
print(search.invoke("test"))
都得到类似的输出:
Wellcome LangChain! This is a search tool example.
LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。
觉得有用 收藏 收藏 收藏
点个赞 点个赞 点个赞
End
GPT专栏文章:
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
大模型查询工具助手之股票免费查询接口
GPT实战系列-简单聊聊LangChain
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
GPT实战系列-ChatGLM2模型的微调训练参数解读
GPT实战系列-如何用自己数据微调ChatGLM2模型训练
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案
GPT实战系列-Baichuan2本地化部署实战方案
GPT实战系列-Baichuan2等大模型的计算精度与量化
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF
GPT实战系列-探究GPT等大模型的文本生成-CSDN博客
相关文章:
GPT实战系列-一种构建LangChain自定义Tool工具的简单方法
GPT实战系列-一种构建LangChain自定义Tool工具的简单方法 LLM大模型: GPT实战系列-探究GPT等大模型的文本生成 GPT实战系列-Baichuan2等大模型的计算精度与量化 GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF …...
【Docker】Memcached 容器化部署
Memcached环境标准软件基于Bitnami Memcached 构建。当前版本为1.6.24 你可以通过轻云UC部署工具直接安装部署,也可以手动按如下文档操作,该项目已经全面开源,可以从如下环境获取 配置文件地址: https://gitee.com/qingplus/qingcloud-platf…...
Langchain-Chatchat本地搭建ChatGLM3模型和提取PDF内容
文章目录 1、软件要求2、安装CUDA2.1、安装gcc2.2、安装CUDA 3、安装Anaconda33.1、下载Anaconda33.2、创建python虚拟环境 4、部署系统4.1、下载源码4.2、安装依赖4.3、下载模型4.4、初始化配置和知识库4.4.1、初始化配置4.4.2、初始化知识库 4.5、运行4.6、运行4.6.1、启动4.…...
案例分析篇03:一篇文章搞定软考设计模式考点(2024年软考高级系统架构设计师冲刺知识点总结系列文章)
专栏系列文章推荐: 2024高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12593400.html 【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2024年软考高级系统架构设计师冲刺知识点总结-案例分析篇-…...
套接字的地址结构,IP地址转换函数,网络编程的接口
目录 一、套接字的地址结构 1.1 通用socket地址结构 1.2 专用socket地址结构 1.2.1 tcp协议族 1.2.3 IP协议族 二、IP地址转换函数 三、网络编程接口 3.1 socket() 3.2 bind() 3.3 listen() 3.4 accept() 3.5 connect() 3.6 close() 3.7 recv()、send() 3.8 recv…...
Java回顾总结--RandomAccessFile和NIO
目录 一、RandomAccessFile1.1 为什么要有RandomAccessFile?1.2 常用方法简介1.3 RandomAccessFile 特点和优势1.3.1 既可以读也可以写1.3.2 可以指定位置读写 1.4 示例 二、NIONIO使用示例 一、RandomAccessFile 1.1 为什么要有RandomAccessFile? Ran…...
2024年3月第15届蓝桥杯青少组STEMA考试C++中高级真题试卷
第15届蓝桥杯青少组STEMA考试C中高级真题试卷(2024年3月) 题目总数:11 总分数:400 选择题 第 1 题 单选题 (110010)2(c3)16的结果是( )。 A. (240)10 B. (11110101)2 C. (366)8 D. (f6)16 第 2 题 单选题 …...
Hyperf AOP 和 注解
注解 (hyperf.wiki) AOP 面向切面编程 (hyperf.wiki) 切面 定义切面(Aspect) 根据官方教程定义一个切面。可以指定类、方法、参数和注解上生效。 <?php namespace App\Aspect;use App\Service\SomeClass; use App\Annotation\SomeAnnotation; use Hyperf\Di\Annotatio…...
【C++】string类(介绍、常用接口)
🌈个人主页:秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343🔥 系列专栏:http://t.csdnimg.cn/eCa5z 目录 string类的常用接口说明 string类对象的常见构造 编辑 string字符串的遍历(迭代器…...
SpringBoot项目中同时支持https和http协议
实用干货!看壹哥如何在SpringBoot项目中同时支持https和http协议_springboot http htpps共存-CSDN博客...
三大排序:冒泡、选择、插入
冒泡排序: 冒泡排序(Bubble Sort)是一种简单的排序算法。它通过比较相邻元素的大小,并交换它们的位置,使较大(或较小)的元素逐渐“浮”到数组的一端,从而实现排序的目的。 下面是冒…...
Android中MultiDex优化
MultiDex基本思路 当一个Dex文件太肥的时候(方法数目太多、文件太大),在打包或在安装或运行apk也会出问题。 解决方法就是将这个硕大的Dex文件拆分成若干个小的Dex文件。 刚好一个ClassLoader可以有多个DexFile。 MultiDex主要性能瓶颈 解压缩和Dex优化(…...
MySQL 8.0 的执行计划(EXPLAIN)
MySQL 8.0 的执行计划(也称为“EXPLAIN”计划)是数据库优化器为 SQL 查询生成的步骤序列。解读执行计划可以帮助数据库管理员(DBA)和开发者理解查询如何执行,识别潜在的性能问题,并据此优化查询。 下面是如…...
leetcode——二叉树问题汇总
leetcode 144. 二叉树的前序遍历 ①递归法: /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* TreeNode(int val,…...
Android基础开发-饿汉式申请权限
1、案例,打开app时,就要申请权限 直接在onCreateView中申请所有权限就可,然后在选择的回调里边判断申请的结果 package com.example.client;import android.Manifest; import android.content.Intent; import android.content.pm.PackageMa…...
java Day7 正则表达式|异常
文章目录 1、正则表达式1.1 常用1.2 字符串匹配,提取,分割 2、异常2.1 运行时异常2.2 编译时异常2.3 自定义异常2.3.1 自定义编译时异常2.3.2 自定义运行时异常 1、正则表达式 就是由一些特定的字符组成,完成一个特定的规则 可以用来校验数据…...
Python算法题集_搜索二维矩阵
Python算法题集_搜索二维矩阵 题74:搜索二维矩阵1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【矩阵展开为列表二分法】2) 改进版一【行*列区间二分法】3) 改进版二【第三方模块】 4. 最优算法5. 相关资源 本文为Python算法题集之…...
学习笔记:顺序表和链表(一、顺序表)
首先来个导言: 1.数组的优势:下标的随机访问,物理空间连续。数组指针用[ ]或者 * , 结构体指针用 - > 2.书写习惯 test.c写出主体框架 QelList.c写出结构体、头文件、函数声明 QelList.c写出函数的实现 3.挪动:如果从前…...
Midjourney从入门到实战:图像生成命令及参数详解
目录 0 专栏介绍1 Midjourney Bot常用命令2 Midjourney绘图指令格式3 Midjourney绘图指令参数3.1 模型及版本3.2 画面比例3.3 风格化3.4 图片质量3.5 混乱值3.6 随机数种子3.7 重复贴图3.8 停止3.8 垫图权重3.9 提示词权重分割 0 专栏介绍 🔥Midjourney是目前主流的…...
C语言分析基础排序算法——插入排序
目录 插入排序 直接插入排序 希尔排序 希尔排序基本思路解析 希尔排序优化思路解析 完整希尔排序文件 插入排序 直接插入排序 所谓直接插入排序,即每插入一个数据和之前的数据进行大小比较,如果较大放置在后面,较小放置在前面&#x…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
