YoloV8实战:YoloV8-World应用实战案例
摘要
YOLO-World模型确实是一个突破性的创新,它结合了YOLOv8框架的实时性能与开放式词汇检测的能力,为众多视觉应用提供了前所未有的解决方案。以下是对YOLO-World模型的进一步解读:
模型架构与功能
YOLO-World模型充分利用了YOLOv8框架的先进特性,并引入了开放式词汇检测功能。这一创新使得模型能够识别并检测图像中任何由描述性文本指定的物体,无需预先定义对象类别。这一功能使得YOLO-World模型在动态和不确定的场景中具有极高的实用性。
在架构上,YOLO-World模型采用了视觉语言建模和预训练的方法,以优化在大量数据集上的性能。这种方法不仅提高了模型的准确性,还使得模型能够在零拍摄场景中快速识别大量物体。此外,YOLO-World模型还利用了CNN的计算速度,提供了实时的开放词汇检测解决方案,满足了各行业对即时结果的需求。
效率与性能
YOLO-World模型在效率和性能上取得了显著的进步。通过优化算法和降低计算要求,该模型能够在不牺牲性能的前提下,大幅度减少计算和资源需求。这使得YOLO-World模型成为一种可替代其他大型模型(如SAM)的强大工具,但计算成本仅为它们的一小部分。这种优势使得YOLO-World模型在实时应用中具有更高的竞争力。
离线词汇推理
为了进一步提高效率,YOLO-World模型引入了“先提示后检测”的策略。这一策略利用离线词汇嵌入来简化检测过程。具体来说,模型可以使用预先计算的自定义提示(如标题或类别),并将其编码和存储为离线词汇嵌入。在检测时,模型可以直接利用这些嵌入信息,从而避免了实时计算的复杂性,进一步提
相关文章:
YoloV8实战:YoloV8-World应用实战案例
摘要 YOLO-World模型确实是一个突破性的创新,它结合了YOLOv8框架的实时性能与开放式词汇检测的能力,为众多视觉应用提供了前所未有的解决方案。以下是对YOLO-World模型的进一步解读: 模型架构与功能 YOLO-World模型充分利用了YOLOv8框架的先进特性,并引入了开放式词汇检…...

Python 导入Excel三维坐标数据 生成三维曲面地形图(体) 5-1、线条平滑曲面且可通过面观察柱体变化(一)
环境和包: 环境 python:python-3.12.0-amd64包: matplotlib 3.8.2 pandas 2.1.4 openpyxl 3.1.2 scipy 1.12.0 代码: import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import griddata fro…...

cmake初识
cmake 什么是软件构建和编译工具cmake安装cmakewindowsLinux 通过cmake编译代码准备CMakeLists.txt注释块状注释cmake_minimum_required:确定cmake的最低版本project:定义工程名称:add_executable:定义工程会生成一个可执行程序准备生成可执行…...

Swift 入门学习:集合(Collection)类型趣谈-下
概览 集合的概念在任何编程语言中都占有重要的位置,正所谓:“古来聚散地,宿昔长荆棘;游人聚散中,一片湖光里”。把那一片片、一瓣瓣、一粒粒“可耐”的小精灵全部收拢、吸纳的井然有序、条条有理,怎能不让…...

nova 12 LTPO来了!LTPO动态自适应刷新率屏120Hz体验更流畅 ,1Hz阅读更省电
2023年12月26日,华为召开华为冬季全场景发布会,正式发布华为nova 12系列。全新华为nova 12 Pro/Ultra 上搭载1~120Hz LTPO 动态自适应刷新率屏,作为华为旗舰系列的LTPO特性现在来到了nova 系列上,到底表现如何呢? 手机…...

【rk3368 android6.0 恢复出厂设置功能】
rk3368 android6.0 恢复出厂设置功能 恢复出厂设置三种方法一,设置--进入恢复出厂设置页面二,发送广播形式三,命令形式总结 郑重声明:本人原创博文,都是实战,均经过实际项目验证出货的 转载请标明出处:攻城狮2015 恢复…...

闲聊电脑(7)常见故障排查
闲聊电脑(7)常见故障排查 夜深人静,万籁俱寂,老郭趴在电脑桌上打盹,桌子上的小黄鸭和桌子旁的冰箱又开始窃窃私语…… 小黄鸭:冰箱大哥,平时遇到电脑故障该咋处理呢? 冰箱…...
Vim 编辑器|批量注释与批量取消注释
添加注释 ctrl v 进入块选泽模式。上下键选中需要注释的行。按大写 I (shift i) 进入插入模式,输入注释符。按两次 ESC 退出,即完成添加注释。shift : 再输入 qw 保存退出。 取消注释 ctrl v 进入块选泽模式。上下键选中…...
Android 使用AIDL HAL
生成的目录结构 以audioControl 为例: 首先编写的是aidl文件。 其文件目录结构是:── android │ └── hardware │ └── automotive │ └── audiocontrol │ ├── AudioFocusChange.aidl │ ├── AudioGainConf…...

C++的一些基础语法
前言: 本篇将结束c的一些基础的语法,方便在以后的博客中出现,后续的一些语法将在涉及到其它的内容需要用到的时候具体展开介绍;其次,我们需要知道c是建立在c的基础上的,所以c的大部分语法都能用在c上。 目…...
mysql 技术100问?
什么是软件架构?它的定义和目的是什么?软件架构设计的基本原则是什么?请解释一下模块化架构和分层架构的区别。为什么重视可伸缩性在软件架构中的作用?请讨论一下微服务架构和单体应用架构的区别和优劣。如何选择适合项目的软件架…...
APK漏洞扫描工具
一、APKDeepLens是一个基于python的工具,旨在扫描Android应用程序,专门针对OWASP TOP 10移动漏洞。 工具:python3.8或者以上版本 安装 git clone https://github.com/d78ui98/APKDeepLens/tree/main cd /APKDeepLens python3 -m venv venv…...

ReactNative项目构建分析与思考之react-native-gradle-plugin
前一段时间由于业务需要,接触了下React Native相关的知识,以一个Android开发者的视角,对React Native 项目组织和构建流程有了一些粗浅的认识,同时也对RN混合开发项目如何搭建又了一点小小的思考。 RN环境搭建 RN文档提供了两种…...
LeetCode454 四数相加
给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足: 0 < i, j, k, l < n nums1[i] nums2[j] nums3[k] nums4[l] 0 示例 1: 输入:nums1 [1,2], nu…...

Kafka消费者重平衡
「(重平衡)Rebalance本质上是一种协议,规定了一个Consumer Group下的所有Consumer如何达成一致,来分配订阅Topic的每个分区」。 比如某个Group下有20个Consumer实例,它订阅了一个具有100个分区的Topic。 正常情况下&…...

【线代基础】张量、向量、标量、矩阵的区别
1、标量(Scalar) 纯数字,无方向性、无维度概念。因此也叫 标量张量、零维张量、0D张量 例如,x18,x21.34 x1、x2即为标量 2、张量(tensor) 具有方向性,可以理解为一个多维数组&a…...

用chatgpt写论文重复率高吗?如何降低重复率?
ChatGPT写的论文重复率很低 ChatGPT写作是基于已有的语料库和文献进行训练的,因此在写作过程中会不可避免地引用或借鉴已有的研究成果和观点。同时,由于ChatGPT的表述方式和写作风格与人类存在一定的差异,也可能会导致论文与其他文章相似度高…...

字节跳动也启动春季校园招聘了(含二面算法原题)
字节跳动 - 春招启动 随着各个大厂陆续打响春招的响头炮,字节跳动也官宣了春季校园招聘的正式开始。 还是那句话:连互联网大厂启动校招计划尚且争先恐后,你还有什么理由不马上行动?! 先来扫一眼「春招流程」和「面向群…...

二,几何相交---4,BO算法---(3)数据结构
数据结构分两块,一个是某一时间状态的局部相交线段。一个是事件队列,是某一时刻局部相交线段的集合。...
中间件MQ面试题之Kafka
MQ相关面试题 Kafka面试题 (1)rockermq和kafka 的区别在哪里? 使用场景有什么不一样? 不同点: 数据可靠性 不同: RocketMQ:支持异步实时刷盘、同步刷盘、同步复制、异步复制;kafka:使用异步刷盘方式,异步复制/同步复制。性能对比:kafka单机写入TPS比较高单机支持…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
CppCon 2015 学习:Simple, Extensible Pattern Matching in C++14
什么是 Pattern Matching(模式匹配) ❝ 模式匹配就是一种“描述式”的写法,不需要你手动判断、提取数据,而是直接描述你希望的数据结构是什么样子,系统自动判断并提取。❞ 你给的定义拆解: ✴ Instead of …...