当前位置: 首页 > news >正文

(差分)胡桃爱原石

琴团长带领着一群胡桃准备出征,进攻丘丘人,出征前,琴团长根据不同胡桃的战力,发放原石作为军饷,琴团长分批次发放,每批次会给连续的几个胡桃发放相同的原石,琴团长最后想知道给每个胡桃发放了多少原石?

输入格式:

第一行两个整数N(<=100000)、M,表示胡桃的数量和琴团长发放原石的批次数。
接下来M行,每行三个整数,X,Y,K。在第X个胡桃到第Y个胡桃之间发放K个原石。

输出格式:

一行N个数,第i个数表示第i个胡桃拿到的原石数,结果不超过长整型。

输入样例:

5 3
1 2 1
2 3 2
2 5 3

输出样例:

在这里给出相应的输出。例如:

1 6 5 3 3 

代码: 

#include<bits/stdc++.h>
using namespace std;
int a[100005],b[100005];
int main(){int n,m;cin>>n>>m;while(m--){int x,y,z;cin>>x>>y>>z;b[x] += z;b[y+1] -= z;}for(int i = 1;i<=n;i++){a[i] = a[i-1]+b[i];}for(int i = 1;i<=n;i++){cout<<a[i]<<" ";}
}

相关文章:

(差分)胡桃爱原石

琴团长带领着一群胡桃准备出征&#xff0c;进攻丘丘人&#xff0c;出征前&#xff0c;琴团长根据不同胡桃的战力&#xff0c;发放原石作为军饷&#xff0c;琴团长分批次发放&#xff0c;每批次会给连续的几个胡桃发放相同的原石&#xff0c;琴团长最后想知道给每个胡桃发放了多…...

二级Java程序题--01基础操作:源码大全(all)

目录 1.基本操作&#xff08;源代码&#xff09;&#xff1a; 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.…...

伪分布HBase的安装与部署

1.实训目标 &#xff08;1&#xff09;熟悉掌握使用在Linux下安装伪分布式HBase。 &#xff08;2&#xff09;熟悉掌握使用在HBase伪分布式下使用自带Zookeeper。 2.实训环境 环境 版本 说明 Windows 10系统 64位 操作电脑配置 VMware 15 用于搭建所需虚拟机Linux系统 …...

Python语言基础与应用-北京大学-陈斌-P40-39-基本扩展模块/上机练习:计时和文件处理-给算法计时-上机代码

Python语言基础与应用-北京大学-陈斌-P40-39-基本扩展模块/上机练习&#xff1a;计时和文件处理-给算法计时-上机代码 上机代码&#xff1a; # 基本扩展模块训练 给算法计时 def factorial(number): # 自定义一个计算阶乘的函数i 1result 1 # 变量 result 用来存储每个数的阶…...

Sqllab第一关通关笔记

知识点&#xff1a; 明白数值注入和字符注入的区别 数值注入&#xff1a;通过数字运算判断&#xff0c;1/0 1/1 字符注入&#xff1a;通过引号进行判断&#xff0c;奇数个和偶数个单引号进行识别 联合查询&#xff1a;union 或者 union all 需要满足字段数一致&…...

【Golang星辰图】图像和多媒体处理的创新之路:Go语言的无限潜能

图像处理、音视频编辑&#xff0c;Go语言不再局限&#xff1a;揭秘opencv和goav的威力 前言: 在当今的数字时代&#xff0c;图像处理和多媒体技术在各个领域中的应用越来越广泛。无论是计算机视觉、图像处理还是音视频处理&#xff0c;选择合适的库和工具至关重要。本文将介绍…...

MES管理系统中电子看板都有哪些类型?

随着工业信息化和智能制造的不断发展&#xff0c;MES管理系统已经成为现代制造业不可或缺的重要工具。MES管理系统通过集成和优化生产过程中的各个环节&#xff0c;实现对生产过程的实时监控、调度和管理&#xff0c;提高生产效率和质量。 在生产制造过程中&#xff0c;看板管…...

【Flutter 面试题】await for 如何使用?

【Flutter 面试题】await for 如何使用&#xff1f; 文章目录 写在前面解答补充说明完整代码示例运行结果详细说明 写在前面 &#x1f64b; 关于我 &#xff0c;小雨青年 &#x1f449; CSDN博客专家&#xff0c;GitChat专栏作者&#xff0c;阿里云社区专家博主&#xff0c;51…...

MongoDB聚合运算符:$dayOfWeek

$dayOfWeek返回日期中“星期”的部分&#xff0c;值的范围1-7&#xff0c;即Sunday~Saturday。 语法 { $dayOfWeek: <dateExpression> }参数说明&#xff1a; <dateExpression>为可被解析为Date、Timestamp或ObjectID的表达式<dateExpression>也可以是一个…...

Visual Studio单步调试中监视窗口变灰的问题

在vs调试中&#xff0c;写了这样一条语句 while((nfread(buf, sizeof(float), N, pf))>0) 然而&#xff0c;在调试中&#xff0c;只要一执行while这条语句&#xff0c;监视窗口中的变量全部变为灰色&#xff0c;不能查看&#xff0c;是程序本身并没有报错&#xff0c;能够继…...

【Selenium】selenium介绍及工作原理

一、Selenium介绍 用于Web应用程序测试的工具&#xff0c;Selenium是开源并且免费的&#xff0c;覆盖IE、Chrome、FireFox、Safari等主流浏览器&#xff0c;通过在不同浏览器中运行自动化测试。支持Java、Python、Net、Perl等编程语言进行自动化测试脚本编写。 官网地址&…...

【2024-完整版】python爬虫 批量查询自己所有CSDN文章的质量分:附整个实现流程

【2024】批量查询CSDN文章质量分 写在最前面一、分析获取步骤二、获取文章列表1. 前期准备2. 获取文章的接口3. 接口测试&#xff08;更新重点&#xff09; 三、查询质量分1. 前期准备2. 获取文章的接口3. 接口测试 四、python代码实现1. 分步实现2. 批量获取文章信息3. 从exce…...

Nuxt3: useFetch使用过程常见一种报错

一、问题描述 先看一段代码&#xff1a; <script setup> const fetchData async () > {const { data, error } await useFetch(https://api.publicapis.org/entries);const { data: data2, error: error2 } await useFetch(https://api.publicapis.org/entries);…...

当代计算机语言占比分析

在当今快速发展的科技领域&#xff0c;计算机语言作为程序员的工具之一&#xff0c;扮演着至关重要的角色。随着技术的不断演进&#xff0c;各种编程语言层出不穷&#xff0c;但在实际开发中&#xff0c;哪些计算机语言占据主导地位&#xff1f;本文将对当代计算机语言的占比进…...

基于大模型和向量数据库的 RAG 示例

1 RAG 介绍 RAG是一种先进的自然语言处理方法&#xff0c;它结合了信息检索和文本生成技术&#xff0c;用于提高问答系统、聊天机器人等应用的性能。 2 RAG 的工作流程 文档加载&#xff08;Document Loading&#xff09; 从各种来源加载大量文档数据。这些文档…...

【C语言】比较两个字符串大小,strcmp函数

目录 一&#xff0c;strcmp函数 1&#xff0c;strcmp函数 2&#xff0c;函数头文件&#xff1a; 3&#xff0c;函数原型&#xff1a; 4&#xff0c;返回取值&#xff1a; 二&#xff0c;代码实现 三&#xff0c;小结 一&#xff0c;strcmp函数 1&#xff0c;strcmp函数 …...

深入理解与应用Keepalive机制

目录 引言 一、VRRP协议 &#xff08;一&#xff09;VRRP概述 1.诞生背景 2.基本理论 &#xff08;二&#xff09;VRRP工作原理 &#xff08;三&#xff09;VRRP相关术语 二、keepalive基本理论 &#xff08;一&#xff09;基本性能 &#xff08;二&#xff09;实现原…...

嵌入(embedding)概念

嵌入&#xff08;embedding&#xff09;在数学和相关领域中的确是指将一个数学对象在保持其某些关键性质不变的前提下&#xff0c;注入到一个更大或更高维的空间中。这个过程不仅仅是简单的映射&#xff0c;而是要求注入的对象在新空间中的表现形式能够完整反映原有对象的内在结…...

豆瓣书影音存入Notion

使用Python将图书和影视数据存放入Notion中。 &#x1f5bc;️介绍 环境 Python 3.10 &#xff08;建议 3.11 及以上&#xff09;Pycharm / Vs Code / Vs Code Studio 项目结构 │ .env │ main.py - 主函数、执行程序 │ new_book.txt - 上一次更新书籍 │ new_video.…...

Lucene 分词 示例代码

import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.analysis.TokenStream; import org...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...