【数据结构七】堆与PriorityQueue详解
堆
在Java中有一种数据结构基于队列,并保证操作的数据带有优先级,该数据结构应该提供了两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。它的底层使用了堆这种数据结构,堆其实就是在二叉树的基础上进行了一些调整。
1.什么是堆
堆的概念:
堆能把它的所有元素按照完全二叉树的方式存储在一个一维数组中,并保证每次出队列的元素都是这些元素中的最大值或最小值。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
- 堆中某个节点的值总是不大于或不小于其父节点的值;
- 堆总是一颗完全二叉树
完全二叉树

一般二叉树

堆的存储方式:
前面过二叉树的存储方式有两种,数组或链表,因为数组存储的方式在二叉树不是完全二叉树的情况下,有明显的对内存的浪费,所以我们当时选择了链表的方式,但是堆肯定是一颗完全二叉树,在这里我们利用层序的规则采用数组来高效存储。
- 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
- 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子
- 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子
2.优先级队列(堆)的实现
我们以创建一个小根堆为例,如何创建一个小根堆呢?
其实这是一个不断向下调整的过程,定义parent等于二叉树的根节点,同过让它不断与孩子节点进行比较和交换位置,将这样的过程重复就能得到一个堆了,具体过程如下:
1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)
2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在
- parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标记
- 将parent与较小的孩子child比较,如果:
- parent小于较小的孩子child,调整结束
- 否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续2。

堆的插入:
堆的插入总共需要两个步骤:
1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)
2. 将最后新插入的节点向上调整,直到满足堆的性质

堆的删除:
堆的删除一定删除的是堆顶元素。我们可以通过以下步骤进行删除操作:
1. 将堆顶元素对堆中最后一个元素交换
2. 将堆中有效数据个数减少一个
3. 对堆顶元素进行向下调整
由上述可知,创建一个自己的堆重点需要手写向上调整,和向下调整的方法,解决了这两个方法,堆的操作便可迎刃而解了。下面的优先级队列的代码实现:
public class MyPriorityQyueue {public int[] array;public int usedSize;public MyPriorityQyueue(){this.array=new int[10];}public void initArray(int[] arr){for(int i=0;i<arr.length;i++){array[i]=arr[i];usedSize++;}}public void createHeap() {for (int parent = (usedSize-1-1)/2; parent >= 0 ; parent--) {shiftDown(parent,usedSize);}}public void offer(int val) {if(isFull()) {//扩容array = Arrays.copyOf(array,2*array.length);}array[usedSize++] = val;//11//向上调整shiftUp(usedSize-1);//10}public int pop() {if(isEmpty()) {return -1;}int ret=array[0];swap(array,0,usedSize-1);usedSize--;shiftDown(0,usedSize);return ret;}public int peek(){if(isEmpty()) {return -1;}return array[0];}public boolean isEmpty() {return usedSize == 0;}private void swap(int[] array,int i,int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}public boolean isFull() {return usedSize == array.length;}private void shiftDown(int parent,int len){int child =2*parent+1;while(child<len){if(child+1<len&&array[child]<array[child+1]){child++;}if(array[child]<array[parent]){int tmp=array[child];array[child]=array[parent];array[parent]=tmp;parent=child;child=2*parent+1;}else{break;}}}private void shiftUp(int child) {int parent = (child-1)/2;while (child > 0) {if(array[child] < array[parent]) {int tmp = array[child];array [child] = array[parent];array[parent] = tmp;child = parent;parent = (child-1)/2;}else {break;}}}
}
3.PriorityQueue的使用
PriorityQueue是Java对堆的一个实现类,继承了Queue接口。
- PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出ClassCastException异常
- 不能插入null对象,否则会抛出NullPointerException
- 没有容量限制,可以插入任意多个元素,其内部可以自动扩容
- 插入和删除元素的时间复杂度为O(log2N)
- PriorityQueue底层使用了堆数据结构
- PriorityQueue默认情况下是小堆---即每次获取到的元素都是最小的元素
在Java中重写comparator方法可实现小根堆到大根堆的转换:
A=new PriorityQueue<>(new Comparator<Integer>() {@Overridepublic int compare(Integer o1, Integer o2) {return o2-o1;}
});
常用方法:
| 函数名 | 功能介绍 |
| boolean offer(E e) | 插入元素e,插入成功返回true,e不能为空,会自动扩容。时间复杂度O(log2N)。 |
| E peek() | 获取优先级最高的元素。 |
| E poll() | 移除优先级最高的元素并返回。 |
| int size() | 获取有效元素的个数 |
| void clear() | 清空 |
| boolean isEmpty() | 检测优先级队列是否为空。 |
优先级队列的扩容说明:
如果容量小于64时,是按照oldCapacity的2倍方式扩容的
如果容量大于等于64,是按照oldCapacity的1.5倍方式扩容的
如果容量超过MAX_ARRAY_SIZE,按照MAX_ARRAY_SIZE来进行扩容
4.优先级队列的应用
利用堆排序的思想解决TOP-K问题:
在数据量极大的情况下求数据集合中前K个最大的元素或者最小的元素。
因为此时数据太大,无法一次性全部加载到内存中,不能使用一般的排序方法来进行求解了,最佳方式用堆求解,思路如下:
1.用数据集合中前K个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆
2.用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
相关文章:
【数据结构七】堆与PriorityQueue详解
堆 在Java中有一种数据结构基于队列,并保证操作的数据带有优先级,该数据结构应该提供了两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。它的底层使用了堆这种数据结…...
uniapp写支付的操作
支付的时候一般需要几个参数: ‘timeStamp’: 时间戳,‘nonceStr’: 随机字符串,不超过32位‘package’: 下单后接口返回的prepauid‘signType’: 签名的算法‘paySign’: 后端会给前端一个签名sign: data.sign // 根据签名算法生成签名 <template&…...
微信小程序开发系列(二十四)·wxml语法·列表渲染·wx:for-item 和 wx:for-index
目录 1. 如果需要对默认的变量名和下标进行修改,可以使用wx:for-item 和 wx:for-index 2. 将 wx:for 用在 标签上,以渲染一个包含多个节点的结构块 方法一 方法二 3. 总结 3.1 wx:for-item 和 wx:for-index总结 3.2 总结 1. 如果需要对默…...
下载无水印抖音视频
在抖音看到某些视频想下载,却出现无法保存在本地【显示"作品暂时无法保存,链接已复制"】。或者下载的视频有水印。 而某些微信小程序下载可能需要付费或者有水印。其实我们可以直接使用电脑浏览器直接下载。 举个例子: 这是来自王道官方账号的一条视频链…...
L1-039 古风排版(C++)
中国的古人写文字,是从右向左竖向排版的。本题就请你编写程序,把一段文字按古风排版。 输入格式: 输入在第一行给出一个正整数N(<100),是每一列的字符数。第二行给出一个长度不超过1000的非空字符串&a…...
springboot项目docker分层构建
一、需求场景 在使用dockerfile构建springboot项目时,速度较慢,用时比较长,为了加快构建docker镜像的速度,采用分层构建的方式 二、构建配置 1、pom.xml配置 <properties><project.build.sourceEncoding>UTF-8<…...
深入理解SPA、CSR与SSR的区别及应用
随着Web技术的快速发展,前端开发架构也在不断演进。在现代Web应用中,单页面应用(SPA)、客户端渲染(CSR)和服务器端渲染(SSR)是三种常见的实现方式,它们各自拥有独特的特性…...
基于电鳗觅食优化算法(Electric eel foraging optimization,EEFO)的无人机三维路径规划(提供MATLAB代码)
一、无人机路径规划模型介绍 无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行…...
将SQL数据库转换为Mysql数据库
一、准备工作 1、SQL server安装包与已经有数据的mdf、ldf数据库文件; 2、.net Framework安装包;(用于支持SQL Server安装的组件) 3、MySql安装包;(用于目标数据库的环境安装) 4、navicat安装包…...
Java集合进阶
双列集合 单列集合的特点:一次添加一个。 双列集合的特点:一次添加一对/键值对/键值对对象/Entry。 左键(不可重复)右值(可重复),一一对应。 Map是双列集合的顶层接口,他的功能是…...
一.算法基础
目录 1.算法基础 2.算法概念 3.时间复杂度--用来评估算法运行效率的一个式子 如何简单快速的判断算法复杂度? 4.空间复杂度 1.算法基础 2.算法概念 --静态动态 3.时间复杂度--用来评估算法运行效率的一个式子 ----一个单位!!! 1-在什么配置下运行(机器) 2-问题的规模…...
python自学7
第二章第一节面向对象 程序的格式都不一样,每个人填写的方式也有自己的习惯,比如收集个人信息,可能有人用字典字符串或者列表, 类的成员方法 类和对象 构造方法 挨个传输值太麻烦了,也没有方便点的,有&…...
Umi - 刷新后页面报404
Umi 项目本地运行刷新没问题,但是部署之后刷新页面报404。因为Umi 默认是用 browser 模式,需要做一下处理。 以下是官方给出解决方案。 一、解决方案 1. 方案一:改用hashHistory .umirc.js {history: { type: hash }, }这个方案项目打包…...
图片编辑器tui-image-editor
提示:图片编辑器tui-image-editor 文章目录 前言一、安装tui-image-editor二、新建components/ImageEditor.vue三、修改App.vue四、效果五、遇到问题 this.getResolve is not a function总结 前言 需求:图片编辑器tui-image-editor 一、安装tui-image-ed…...
如何使用“ubuntu移动文件、复制文件到其他文件夹“?
一、移动文件到其他文件夹命令 mv node_exporter-1.5.0.linux-amd64.tar.gz /usr/local/etc/prometheus 二、复制文件到其他文件夹命令 cp node_exporter-1.5.0.linux-amd64.tar.gz /home/master...
python实现B/B+树
python实现–顺序查找 python实现–折半查找 python实现–分块查找 python实现B/B树 B树和B树都是一种多路搜索树,用于对大量数据进行排序和查找。它们在数据库系统中被广泛应用,特别是用于构建索引结构。 B树(B-Tree) B树&…...
感觉捡到宝了!这究竟是哪位大神出的神器?
你们在制作简历时,是不是基本只关注两件事:简历模板,还有基本信息的填写。 当你再次坐下来更新你的简历时,可能会发现自己不自觉地选择了那个“看起来最好看的模板”,填写基本信息,却没有深入思考如何使简历…...
Vue教学17:Element UI基础组件上手,打造美观实用的Vue应用
大家好,欢迎回到我们的Vue教学系列博客!在前十六篇博客中,我们学习了Vue.js的基础知识、安装Node.js与npm、使用Vue Devtools进行调试、Vue实例与生命周期钩子、数据绑定(单向与双向)、计算属性与侦听器、条件渲染和列…...
从政府工作报告探计算机行业发展(在医疗健康领域)
从政府工作报告探计算机行业发展 政府工作报告作为政府工作的全面总结和未来规划,不仅反映了国家整体的发展态势,也为各行各业提供了发展的指引和参考。随着信息技术的快速发展,计算机行业已经成为推动经济社会发展的重要引擎之一。因此&…...
ElasticSearch学习篇10_Lucene数据存储之BKD动态磁盘树
前言 基础的数据结构如二叉树衍生的的平衡二叉搜索树通过左旋右旋调整树的平衡维护数据,靠着二分算法能满足一维度数据的logN时间复杂度的近似搜索。对于大规模多维度数据近似搜索,Lucene采用一种BKD结构,该结构能很好的空间利用率和性能。 …...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
图解JavaScript原型:原型链及其分析 | JavaScript图解
忽略该图的细节(如内存地址值没有用二进制) 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么:保存在堆中一块区域,同时在栈中有一块区域保存其在堆中的地址(也就是我们通常说的该变量指向谁&…...
Java并发编程实战 Day 11:并发设计模式
【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天,今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案,它们不仅提供了优雅的设计思路,还能显著提升系统的性能…...
高效的后台管理系统——可进行二次开发
随着互联网技术的迅猛发展,企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心,成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统,它不仅支持跨平台应用,还能提供丰富…...
