当前位置: 首页 > news >正文

吴恩达深度学习笔记:神经网络的编程基础2.9-2.14

目录

  • 第一门课:神经网络和深度学习 (Neural Networks and Deep Learning)
    • 第二周:神经网络的编程基础 (Basics of Neural Network programming)
      • 2.9 逻辑回归中的梯度下降(Logistic Regression Gradient Descent)

第一门课:神经网络和深度学习 (Neural Networks and Deep Learning)

第二周:神经网络的编程基础 (Basics of Neural Network programming)

2.9 逻辑回归中的梯度下降(Logistic Regression Gradient Descent)

本节我们讨论怎样通过计算偏导数来实现逻辑回归的梯度下降算法。它的关键点是几个重要公式,其作用是用来实现逻辑回归中梯度下降算法。但是在本节视频中,我将使用计算图对梯度下降算法进行计算。我必须要承认的是,使用计算图来计算逻辑回归的梯度下降算法有点大材小用了。但是,我认为以这个例子作为开始来讲解,可以使你更好的理解背后的思想。从而在讨论神经网络时,你可以更深刻而全面地理解神经网络。接下来让我们开始学习逻辑回归的梯度下降算法。

假设样本只有两个特征 x 1 x_1 x1 x 2 x_2 x2,为了计算𝑧,我们需要输入参数 w 1 、 w 2 w_1、w_2 w1w2 和𝑏,除此之外还有特征值 x 1 x_1 x1 x 2 x_2 x2。因此𝑧的计算公式为: z = w 1 x 1 + w 2 x 2 + b z = w_1x_1 + w_2x_2 + b z=w1x1+w2x2+b

回想一下逻辑回归的公式定义如下:

y ^ = a = σ ( z ) 其中 z = w T x + b , σ ( z ) = 1 1 + e − z \hat{y}= a = σ(z) 其中 z= w^Tx + b, σ(z) =\frac{1}{1+e^{-z}} y^=a=σ(z)其中z=wTx+bσ(z)=1+ez1
损失函数: L ( y ^ ( i ) , y ( i ) ) = − y ( i ) log ⁡ ( y ^ ( i ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − y ^ ( i ) ) L( \hat{y}^{(i)},y^{(i)}) = -y^{(i)} \log(\hat{y}^{(i)}) - (1-y^{(i)}) \log(1-\hat{y}^{(i)}) L(y^(i),y(i))=y(i)log(y^(i))(1y(i))log(1y^(i))
代价函数: J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L( \hat{y}^{(i)},y^{(i)}) J(w,b)=m1i=1mL(y^(i),y(i))

假设现在只考虑单个样本的情况,单个样本的代价函数定义如下:
L ( a , y ) = − ( y log ⁡ ( a ) + ( 1 − y ) log ⁡ ( 1 − a ) ) L( a,y) = -(y \log(a) + (1-y) \log(1-a)) L(a,y)=(ylog(a)+(1y)log(1a))
其中𝑎是逻辑回归的输出,𝑦是样本的标签值。现在让我们画出表示这个计算的计算图。
这里先复习下梯度下降法,𝑤和𝑏的修正量可以表达如下:

在这里插入图片描述
如图:在这个公式的外侧画上长方形。然后计算: 𝑦^ = 𝑎 = 𝜎(𝑧) 也就是计算图的下一步。最后计算损失函数𝐿(𝑎, 𝑦)。 有了计算图,我就不需要再写出公式了。因此,为了使得逻辑回归中最小化代价函数𝐿(𝑎, 𝑦),我们需要做的仅仅是修改参数𝑤和𝑏的值。前面我们已经讲解了如何在单个训练样本上计算代价函数的前向步骤。现在让我们来讨论通过反向计算出导数。 因为我们想要计算出的代价函数𝐿(𝑎, 𝑦)的导数,首先我们需要反向计算出代价函数𝐿(𝑎, 𝑦)关于𝑎的导数,在编写代码时,你只需要用𝑑𝑎 来表示 d L ( a , y ) d a \frac{dL(a,y)}{da} dadL(a,y)

通过微积分得到: d L ( a , y ) d a = − y a + 1 − y 1 − a \frac{dL(a,y)}{da}=\frac{-y}{a}+\frac{1-y}{1-a} dadL(a,y)=ay+1a1y

如果你不熟悉微积分,也不必太担心,我们会列出本课程涉及的所有求导公式。那么如果你非常熟悉微积分,我们鼓励你主动推导前面介绍的代价函数的求导公式,使用微积分直接求出𝐿(𝑎, 𝑦)关于变量𝑎的导数。如果你不太了解微积分,也不用太担心。现在我们已经计算出𝑑𝑎,也就是最终输出结果的导数。 现在可以再反向一步,在编写 Python 代码时,你只需要用𝑑𝑧来表示代价函数𝐿关于𝑧 的导数 d L d z \frac{dL}{dz} dzdL,也可以写成 d L ( a , y ) d z \frac{dL(a,y)}{dz} dzdL(a,y),这两种写法都是正确的。 d L d z = a − y \frac{dL}{dz} = a-y dzdL=ay
因为 d L ( a , y ) d z = d L d z = ( d L d a ) ∗ ( d a d z ) \frac{dL(a,y)}{dz} =\frac{dL}{dz}=(\frac{dL}{da})*(\frac{da}{dz}) dzdL(a,y)=dzdL=(dadL)(dzda),并且 d a d z = a ∗ ( 1 − a ) \frac{da}{dz} =a*(1-a) dzda=a(1a),而 d L d a = ( − y a + 1 − y 1 − a ) \frac{dL}{da}= (\frac{-y}{a}+ \frac{1-y}{1-a}) dadL=(ay+1a1y),因此将这两项相乘,得到:

d z = d L ( a , y ) d z = d L d z = d L d a ∗ d a d z = ( − y a + 1 − y 1 − a ) ∗ a ( 1 − a ) = a − y dz=\frac{dL(a,y)}{dz} =\frac{dL}{dz}=\frac{dL}{da}*\frac{da}{dz}=(\frac{-y}{a}+\frac{1-y}{1-a})*a(1-a) =a-y dz=dzdL(a,y)=dzdL=dadLdzda=(ay+1a1y)a(1a)=ay

视频中为了简化推导过程,假设𝑛𝑥这个推导的过程就是我之前提到过的链式法则。如果你对微积分熟悉,放心地去推导整个求导过程,如果不熟悉微积分,你只需要知道𝑑𝑧 = (𝑎 −𝑦)已经计算好了。

现在进行最后一步反向推导,也就是计算𝑤和𝑏变化对代价函数𝐿的影响,特别地,可以用:
d w 1 = 1 m ∑ n = i m x 1 ( i ) ( a ( i ) − y ( i ) ) dw_1=\frac{1}{m}\sum_{n=i}^mx_1^{(i)}(a^{(i)} -y^{(i)}) dw1=m1n=imx1(i)(a(i)y(i))
d w 2 = 1 m ∑ n = i m x 2 ( i ) ( a ( i ) − y ( i ) ) dw_2=\frac{1}{m}\sum_{n=i}^mx_2^{(i)}(a^{(i)} -y^{(i)}) dw2=m1n=imx2(i)(a(i)y(i))
d b = 1 m ∑ n = i m ( a ( i ) − y ( i ) ) db=\frac{1}{m}\sum_{n=i}^m(a^{(i)} -y^{(i)}) db=m1n=im(a(i)y(i))

视频中, 𝑑𝑤1 表示 ∂ L ∂ w 1 = x 1 ⋅ d z ∂L ∂w_1= x_1 ⋅ dz Lw1=x1dz, 𝑑𝑤2 表示 ∂ L ∂ w 2 = x 2 ⋅ d z ∂L∂w_2= x_2 ⋅ dz Lw2=x2dz d b = d z db = dz db=dz
因此,关于单个样本的梯度下降算法,你所需要做的就是如下的事情:
使用公式 d z = ( a − y ) dz = (a − y) dz=(ay)计算𝑑𝑧,
使用 d w 1 = x 1 ⋅ d z dw_1 = x_1 ⋅ dz dw1=x1dz 计算𝑑𝑤1, d w 2 = x 2 ⋅ d z dw_2 = x_2 ⋅ dz dw2=x2dz计算𝑑𝑤2, d b = d z db= dz db=dz 来计算𝑑𝑏,
然后: 更新 w 1 = w 1 − α d w 1 w_1 = w_1 − αdw_1 w1=w1αdw1, 更新 w 2 = w 2 − α d w 2 w_2 = w_2 − αdw_2 w2=w2αdw2, 更新 b = b − α d b b = b − αdb b=bαdb
这就是关于单个样本实例的梯度下降算法中参数更新一次的步骤。
在这里插入图片描述

现在你已经知道了怎样计算导数,并且实现针对单个训练样本的逻辑回归的梯度下降算法。但是,训练逻辑回归模型不仅仅只有一个训练样本,而是有𝑚个训练样本的整个训练集。因此在下一节视频中,我们将这些思想应用到整个训练样本集中,而不仅仅只是单个样本上。

相关文章:

吴恩达深度学习笔记:神经网络的编程基础2.9-2.14

目录 第一门课:神经网络和深度学习 (Neural Networks and Deep Learning)第二周:神经网络的编程基础 (Basics of Neural Network programming)2.9 逻辑回归中的梯度下降(Logistic Regression Gradient Descent) 第一门课&#xff…...

在C++项目中使用python脚本(四种)常见报错解决

上一期我们讲了如何在C中使用python脚本,这期讲讲过程中常会遇到的一些错误。 一、c代码未设置python路径 Py_SetPythonHome(L"D:\\anaconda3\\envs\\envpython3.7");这一句很重要,切记加上并且换成自己的路径 Py_SetPythonHome(L"D:\\a…...

微前端框架 qiankun 配置使用【基于 vue/react脚手架创建项目 】

qiankun官方文档:qiankun - qiankun 一、创建主应用: 这里以 vue 为主应用,vue版本:2.x // 全局安装vue脚手架 npm install -g vue/clivue create main-app 省略 vue 创建项目过程,若不会可以自行百度查阅教程 …...

nodejs切换淘宝源

1. 查看当前地址 npm config get registrynpm config get disturl2. 设置当前地址(设置为淘宝镜像) npm config set registry http://registry.npm.taobao.org/3. 设置当前地址(设置为默认地址) npm config set registry https…...

怎么避免电脑数据被拷贝?电脑如何禁用USB功能?

在无纸化办公的今天,很多重要数据都存放在电脑中。为了避免数据泄露,需要采用安全的方式保护电脑数据。那么,该如何避免电脑数据被拷贝呢?下面我们就来了解一下。 方法一:物理隔绝 物理隔绝是一种原始但有效的USB禁用…...

给电脑加硬件的办法 先找电脑支持的接口,再买相同接口的

需求:我硬盘太小,换或加一个大硬盘 结论:接口是NVMe PCIe 3.0 x4 1.找到硬盘型号 主硬盘 三星 MZALQ512HALU-000L2 (512 GB / 固态硬盘) 2.上官网查 或用bing查 非官方渠道信息,不确定。...

uniapp微信小程序_自定义交费逻辑编写

一、首先看最终效果 先说下整体逻辑,选中状态为淡紫色,点击哪个金额,充值页面上就显示多少金额 二、代码 <view class"addMoney"><view class"addMoneyTittle">充值金额</view><view class"selfaddmoney" :class"{…...

论文阅读——RingMo

RingMo: A Remote Sensing Foundation Model With Masked Image Modeling 与自然场景相比&#xff0c;RS图像存在以下困难。 1&#xff09;分辨率和方位范围大&#xff1a;受遥感传感器的影响&#xff0c;图像具有多种空间分辨率。此外&#xff0c;与自然图像的实例通常由于重…...

Hadoop,Hive 数据预处理CR

记录一次大材小用,我在将.csv电影数据集 电影json数据 导入MySQL时,出现了报错: 很明显,意味着.csv中的数据有非utf8编码的, 尝试使用file查看了下.csv文件的编码格式: 如果不确定原始编码,可以先用file命令尝试检测一下: file -i input.csv该命令会显示文件的MIME类型…...

小程序开发——获取设备信息 API(三)

ty.device.getShareDeviceInfo 获取共享设备信息 需引入DeviceKit&#xff0c;且在>2.2.0版本才可使用 请求参数 Object object 属性类型默认值必填说明deviceIdstring是deviceId 设备 idcompletefunction否接口调用结束的回调函数&#xff08;调用成功、失败都会执行&am…...

Vue2 + node.js项目

1、Vue2 vue2主要功能包括登入、退出、用户权限、表格的增删改查、文件下载。 Vue2项目地址https://gitee.com/www6/finance1.git 2、node.js编写后端接口 2.1、项目初始化 后端地址https://gitee.com/www6/finance-backend.git 创建项目 npm install -g koa-generator …...

如何使用IDE端通义灵码

如何使用IDE端通义灵码 第一步&#xff1a;安装IDE插件&#xff08; VS Code 和 JetBrains 二选一&#xff09; 如何下载安装VS Code &#xff1a;https://code.visualstudio.com 如何下载安装JetBrains&#xff1a;https://www.jetbrains.com/idea/download 第二步&#x…...

微服务分布式springcloud的体育场地预约系统演kdm1z

体育场馆设施预约系统是在实际应用和软件工程的开发原理之上&#xff0c;运用java语言以及Springcloud框架进行开发。首先要进行需求分析&#xff0c;分析出体育场馆设施预约系统的主要功能&#xff0c;然后设计了系统结构。整体设计包括系统的功能、系统总体结构、系统数据结构…...

IDEA开启Run Dashboard

1、Run Dashboard是什么&#xff0c;为什么要使用 Run Dashboard 是 IntelliJ IDEA 中的一个工具窗口&#xff0c;用于管理和监视项目中正在运行的应用程序和配置。它提供了一种集中管理运行和调试过程的方式&#xff0c;可以让开发人员更方便地查看和控制正在运行的应用程序。…...

小程序学习3 goods-card

pages/home/home home.wxml <goods-listwr-class"goods-list-container"goodsList"{{goodsList}}"bind:click"goodListClickHandle"bind:addcart"goodListAddCartHandle"/> <goods-list>是一个自定义组件&#xff0c;它具…...

【投稿优惠-EI稳定检索】2024年图像处理与机械系统工程国际学术会议 (ICIPMSE 2024)

【投稿优惠-EI稳定检索】2024年图像处理与机械系统工程国际学术会议 (ICIPMSE 2024) 大会主题: (主题包括但不限于, 更多主题请咨询会务组苏老师) 图像处理 基于图像的渲染 计算机视觉 可视化分析 模式识别 3D打印 渲染和动画 渲染技术 电脑动画 基于草图的建模 机械…...

Linux系列

安装系列 1.MySQL安装 我们要通过rpm&#xff0c;进行MySQL数据库的安装&#xff0c;主要的步骤如下&#xff1a; rpm -qa 查询当前系统中安装的所有软件 rpm -qa | grep mysql 查询当前系统中安装的名称带mysql的软件 rpm -…...

SQL笔记 -- 黑马程序员

SQL目录 文章目录 SQL目录一、SQL分类1、DDL2、数据类型3、DML4、DQL1&#xff09;基本查询2&#xff09;条件查询3&#xff09;聚合函数查询4&#xff09;分组查询5&#xff09;排序查询6&#xff09;分页查询 5、DCL 一、SQL分类 分类说明DDL数据定义语言&#xff0c;用来定…...

C# MES通信从入门到精通(1)——串口传输文件

前言: 在上位机软件开发领域,有一些工厂的mes系统需要我们通过串口发送文件的方式把一些图片或者检测数据csv文件等发送给服务器,这种方式是一些比较旧的工厂采用的方式,但是这种方式也是存在的,本文就是讲解如何使用串口发送文件详情见下文。 1、串口发送文件思路 将需…...

论文阅读-federated unlearning via class-discriminative pruning

论文阅读-federated unlearning via class-discriminative pruning FUCP 通过类别区分性剪枝进行联邦遗忘 综述中描述&#xff1a;属于面向全局模型中的局部参数调整 利用卷积层的结构特定进行联邦忘却学习&#xff0c;wang等人提出了针对图像分类任务的联邦忘却学习算法FUCP&…...

研发效能DevOps: OpenEuler 部署 drone 持续集成平台

目录 一、实验 1.环境 2.OpenEuler 部署 drone 持续集成平台 二、问题 1.drone登录失败 一、实验 1.环境 &#xff08;1&#xff09;主机 表1 主机 系统架构版本IP备注LinuxopenEuler22.03 LTS SP2 192.168.204.145&#xff08;动态&#xff09; 192.168.204.141&…...

C#,图论与图算法,图着色问题(Graph Coloring)的威尔士-鲍威尔(Welch Powell Algorithm)算法与源代码

Welsh, D.J.A. and Powell, M.B. (1967) An Upper Bound for the Chromatic Number of a Graph and Its Application to Timetabling Problems. 《The Computer Journal》, 10, 85-86. 《The Computer Journal》 1 图着色算法概述 1967年&#xff0c;Welsh和Powell算法引入了…...

用python写一个脚本,实现加速3X并压缩mp4视频以降低文件大小。

为了实现您的需求&#xff0c;我们将使用Python的moviepy库来加速MP4视频3倍并使用ffmpeg选项来进行压缩&#xff0c;以降低文件大小。如果您还没有安装这些库&#xff0c;请先通过以下命令进行安装&#xff1a; pip install moviepy这是一个步骤概述&#xff1a; 读取视频文…...

Flink广播流 BroadcastStream

文章目录 前言BroadcastStream代码示例Broadcast 使用注意事项 前言 Flink中的广播流&#xff08;BroadcastStream&#xff09;是一种特殊的流处理方式&#xff0c;它允许将一个流&#xff08;通常是一个较小的流&#xff09;广播到所有的并行任务中&#xff0c;从而实现在不同…...

IP数据报格式

每一行都由32位比特&#xff0c;即4个字节组成&#xff0c;每个格子称为字段或者域。IP数据报由20字节的固定部分和最大40字节的可变部分组成。 总长度 总长度为16个比特&#xff0c;该字段的取值以字节为单位&#xff0c;用来表示IPv4数据报的长度(首部长度数据载荷长度)最大…...

GET https://registry.npm.taobao.org/xxxx error (CERT_HAS_EXPIRED)解决

PNPM用的阿里源&#xff0c;提示意思是证书过期了&#xff0c;参考网上的解决办法。执行 pnpm config set registry https://registry.npmmirror.com 再用pnpm config get registry查看&#xff0c;确实是 https://registry.npmmirror.com 但是仍旧报错&#xff0c;发现还…...

SSM Java Web项目由于spring-mvc.xml配置不对带来的一系列问题

1 介绍 一年多前&#xff0c;我就买了好多关于Java开发类的书籍&#xff0c;内容关于Java Web实操、Spring 学习指南、Maven实战、IntelliJ IDEA软件开发与应用等等。可是由于工作繁忙&#xff0c;这些书没系统地看完。这也是参加工作后的无奈吧&#xff01; 寒假期间的一周&…...

MySQL事务隔离

什么是事务隔离&#xff1f; 为了确保在并发事务执行时&#xff0c;各个事务之间能够相互独立、互不干扰地运行&#xff0c;从而保证数据的一致性。 事务的隔离级别 MySQL事务隔离为了满足不同场景&#xff0c;提供了4个事务隔离级别&#xff08;严格来讲是InnoDB存储引擎支…...

Java基础知识总结(1)

Java概况 JavaSE是java分类中的标准版&#xff0c;是刚接触java要学习的基础知识。 JavaEE是java分类中的企业版&#xff0c;是java中的高级&#xff0c;涉及到的知识广泛。 JavaME中M是Micro的缩写&#xff0c;用在嵌入式等电子设备中。 Java软件工程师&#xff1a;通过Ja…...

脚手架原理之webpack处理html文件和模块打包

脚手架原理之webpack处理html文件和模块打包 为了更好的理解项目脚手架的使用&#xff0c;我们来学习一下webpack工具&#xff0c;因为脚手架的底层就是基于webpack工具实现的。 安装 webpack工具是基于nodejs的&#xff0c;所以首先要有nodejs环境&#xff0c;其次需要下载…...