当前位置: 首页 > news >正文

Linux——线程池

目录

线程池的概念

线程池的优点

线程池的实现

【注意】

线程池的线程安全

日志文件的实现


线程池的概念

        线程池也是一种池化技术,可以预先申请一批线程,当我们后续有任务的时候就可以直接用,这本质上是一种空间换时间的策略。

        如果有任务来的时候再创建线程,那成本又要提高,又要初始化,又要创建数据结构。

线程池的优点

  • 线程池避免了短时间内创建与销毁线程的代价。
  • 线程池不仅能够保证内核充分利用,还能防止过分调度。

线程池的实现

        我们这次要实现的线程池就是这样,让主线程派发任务,让线程池中的线程处理任务,这也是一个生产者消费者模型。

// thread.hpp
// 把线程封装一下
#pragma once#include <iostream>
#include <string>
#include <cstdio>
#include <vector>
#include <queue>
#include <unistd.h>using namespace std;typedef void*(*func_t)(void*);class ThreadData
{
public:string name_;void* args_;
};class Thread
{
public:Thread(int num, func_t callback, void* args):func_(callback){char nameBuffer[64];snprintf(nameBuffer, sizeof(nameBuffer), "Thread-%d", num);name_ = nameBuffer;tdata_.args_ = args;tdata_.name_ = name_;}void start(){pthread_create(&tid_, nullptr, func_, (void*)&tdata_);}void join(){pthread_join(tid_, nullptr);}string name(){return name_;}~Thread(){}
private:string name_;pthread_t tid_;ThreadData tdata_;func_t func_;
};
// threadPool.hpp#pragma once#include "thread.hpp"
#include "lockGuard.hpp"
#include "log.hpp"const int g_default_num = 3;template <class T>
class ThreadPool
{
public:// 通过接口获得成员变量pthread_mutex_t* getMutex(){return &lock_;}void waitCond(){pthread_cond_wait(&cond_, &lock_);}bool isEmpty(){return task_queue_.empty();}
public:ThreadPool(int thread_num = g_default_num) // 初始化后,就已经有了对象,也有了this指针:num_(thread_num){pthread_mutex_init(&lock_, nullptr);pthread_cond_init(&cond_, nullptr);for (int i = 0; i < num_; i++){threads_.push_back(new Thread(i + 1, routine, this) ); // 通过传入this指针就可以拿到ThreadPool中的task_queue}}void run(){for (auto& iter : threads_){iter->start();cout << iter->name() << "启动成功" << endl;}}// 去掉this指针// 消费的过程static void* routine(void* args){ThreadData* td = (ThreadData*)args;ThreadPool<T>* tq = (ThreadPool<T>*)td->args_; // 去掉this指针就无法访问成员方法了,通过创建线程的时候传入this拿到线程池对象while (true){T task;{lockGuard lockguard(tq->getMutex());  // 加锁while (tq->isEmpty()) tq->waitCond(); // 检测// 读取任务task = tq->getTask();}// 仿函数cout << td->name_ << ", 消费者:" << task._x << " + " << task._y << " = " << task() << endl;// sleep(1);}}void pushTask(const T& task){lockGuard lockguard(&lock_);task_queue_.push(task);pthread_cond_signal(&cond_);}T getTask(){T t = task_queue_.front();task_queue_.pop();return t;}void joins(){for (auto& iter : threads_){iter->join();}}~ThreadPool(){for (auto& iter : threads_){delete iter;}pthread_mutex_destroy(&lock_);pthread_cond_destroy(&cond_);}
private:vector<Thread*> threads_;int num_;queue<T> task_queue_;  // 任务队列pthread_mutex_t lock_; // 互斥锁pthread_cond_t cond_;  // 条件变量
};
// testMain.cc
#include "threadPool.hpp"
#include "Task.hpp"
#include <ctime>int Add(int x, int y)
{return x + y;
}int main()
{srand((unsigned)time(nullptr));cout << "hello thread pool" << endl;ThreadPool<Task> *tp = new ThreadPool<Task>();tp->run();while (true){int x = rand() % 10 + 1;usleep(rand() % 1000);int y = rand() % 10 + 1;Task t(x, y, Add);tp->pushTask(t);cout << "生产者:" << x << " + " << y << " = ? " << endl;//sleep(1);}tp->joins();return 0;
}

【注意】

  1. 线程池中的任务队列会被多个执行流访问,因此我们需要互斥锁对任务队列进行保护。
  2. 线程池中的线程要从任务队列中拿任务,所以任务队列中必须要先有任务,必须要加锁循环检测,如果任务队列为空,那么该线程应该进行等待,直到任务队列中有任务时再将其唤醒,这些操作都是通过加锁和条件变量完成的
  3. 主线程向任务队列中push一个任务后,此时可能有线程正处于等待状态,所以在新增任务后需要唤醒在条件变量下等待的线程
  4. 某线程从任务队列中拿到任务后,该任务就已经属于当前线程了,所以解锁之后再进行处理任务,让加锁的动作更细粒度,也因为处理任务的过程会耗费时间,所以不要将处理动作其放到临界区当中
  5. 要给执行线程函数用static修饰,这个函数的类型必须是void* (*callback)(void*);如果放到类中,该函数就会多一个this指针。但是让他变成静态函数又不能访问线程池中的任务队列,所以要在线程创建的时候把线程池的对象指针传过去,因为初始化列表后已经有了对象,所以一定有this指针。也因为这个函数没有this指针,所以一些类内的操作要提供接口

线程池的线程安全

        我们也可以把线程池变成单例模式(懒汉模式)的,让整个进程只有一个线程池,但是如果以后有多个线程同时访问,同时判断这个单例对象存不存在,那就会有线程安全的问题。

class ThreadPool
{
// ...
private: // 私有构造,删除拷贝构造和赋值重载ThreadPool(int thread_num = g_default_num) // 初始化后,就已经有了对象,也有了this指针:num_(thread_num){pthread_mutex_init(&lock_, nullptr);pthread_cond_init(&cond_, nullptr);for (int i = 0; i < num_; i++){threads_.push_back(new Thread(i + 1, routine, this) ); // 通过传入this指针就可以拿到ThreadPool中的task_queue}}ThreadPool(const ThreadPool<T>&) = delete;const ThreadPool<T> operator=(const ThreadPool<T>& ) = delete;public:static ThreadPool<T>* getThreadPool(int num = g_default_num) // 通过getThreadPool获取线程池{// 只有第一次为空的时候才创建,如果不为空直接返回thread_ptr,这样指针就只有一个{lockGuard lockguard(&mutex);if (nullptr == thread_ptr){thread_ptr = new ThreadPool<T>(num);}}return thread_ptr;}
// ...private:// 添加静态成员变量static ThreadPool<T>* thread_ptr; // 单例模式static pthread_mutex_t mutex;
};
// 初始化
template<class T>
ThreadPool<T>* ThreadPool<T>::thread_ptr = nullptr;template<class T>
pthread_mutex_t ThreadPool<T>::mutex = PTHREAD_MUTEX_INITIALIZER; 

        这样就可以保证,第一次获取ThreadPool对象的时候,多个线程访问就是安全的。但这就带来了另一个问题,如果每次想要获取ThreadPool对象的时候就会申请释放锁,这个行为也是在浪费资源,所以还要再调整一下。

static ThreadPool<T>* getThreadPool(int num = g_default_num)
{// 只有第一次为空的时候才创建,如果不为空直接返回thread_ptr,这样就只new了一次if (nullptr == thread_ptr) // 多判断一次不就可以了吗,已经创建了就直接返回,没有就加锁创建{lockGuard lockguard(&mutex);if (nullptr == thread_ptr){thread_ptr = new ThreadPool<T>(num);}}return thread_ptr;
}

这样使用双重判定空指针就减少了大量已经创建好单例,其他线程还在请求锁的行为。

日志文件的实现

我们需要用到下面这些接口。

// log.hpp
#pragma once#include <iostream>
#include <string>
#include <cstdio>
#include <cstdarg>
#include <unistd.h>
#include <sys/types.h>
#include <fcntl.h>
#include <ctime>// 日志级别
#define DEBUG   0
#define NORMAL  1
#define WARNING 2
#define ERROR   3
#define FATAL   4const char* gLevelMap[] = {"DEBUG","NORMAL","WARNING","ERROR","FATAL"
};// 完整的日志功能,至少有:日志等级 时间 日志内容 支持用户自定义
void logMessage(int level, const char* format, ...) // 最后一个参数就是可变参数列表
{char stdBuffer[1024]; // 日志的标准部分time_t timestamp = time(nullptr); // 时间戳snprintf(stdBuffer, sizeof(stdBuffer), "[%s][%ld]", gLevelMap[level], timestamp);char logBuffer[1024]; // 自定义部分va_list args; // 可变参数列表va_start(args, format);vsnprintf(logBuffer, sizeof (logBuffer), format, args); // 用起来和printf相差不多va_end(args);// printf("%s%s\n", stdBuffer, logBuffer); // 打印到显示器FILE* fp = fopen("log.txt", "a");fprintf(fp, "%s%s\n", stdBuffer, logBuffer); // 打印到文件fclose(fp);
}

        所以以后如果要用到这些线程池、日志文件等,就直接用了。 

相关文章:

Linux——线程池

目录 线程池的概念 线程池的优点 线程池的实现 【注意】 线程池的线程安全 日志文件的实现 线程池的概念 线程池也是一种池化技术&#xff0c;可以预先申请一批线程&#xff0c;当我们后续有任务的时候就可以直接用&#xff0c;这本质上是一种空间换时间的策略。 如果有任…...

Linux:搭建ntp服务器

我准备两个centos7服务器 一个为主服务器连接着外网&#xff0c;并且搭建了ntp服务给其他主机同步 另外一个没有连接外网&#xff0c;通过第一台设备去同步时间 首先两个服务器都要安装ntp软件 yum -y install ntp 再把他俩的时间都改成别的 左侧的是主服务器&#xff0c;主…...

unity学习(57)——选择角色界面--删除角色2

1.客户端添加点击按钮所触发的事件&#xff0c;在selectMenu界面中增加myDelete函数&#xff0c;当点击“删除角色”按钮时触发该函数的内容。 public void myDelete() {string message nowPlayer.id;//string m Coding<StringDTO>.encode(message);NetWorkScript.get…...

Flutter:构建美观应用的跨平台方案

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…...

【深度学习模型移植】用torch普通算子组合替代torch.einsum方法

首先不得不佩服大模型的强大之处&#xff0c;在算法移植过程中遇到einsum算子在ONNX中不支持&#xff0c;因此需要使用普通算子替代。参考TensorRT - 使用torch普通算子组合替代torch.einsum爱因斯坦求和约定算子的一般性方法。可以写出简单的替换方法&#xff0c;但是该方法会…...

鸿蒙 Harmony 初体验

前言 看现在网上传得沸沸扬扬的鸿蒙&#xff0c;打算弄个 hello world 玩一下, 不然就跟不上时代的发展了 环境安装 我的环境 Windows 11 家庭中文版HarmonyOS SDK (API 9)DevEco Studio (3.1.1 Release)Node.js (16.19.1) 开发IDE下载 官方下载链接 配置 nodejs 这里帮…...

Jmeter+ant,ant安装与配置

1.ant含义 ant&#xff1a;Ant翻译过来是蚂蚁的意思&#xff0c;在我们做接口测试的时候&#xff0c;是可以用来做JMeter接口测试生成测试报告的工具 2.ant下载 下载地址&#xff1a;Apache Ant - Ant Manual Distributions download中选择ant 下载安装最新版zip文件 3.…...

【MySQL基础】MySQL基础操作三

文章目录 &#x1f349;1.联合查询&#x1f95d;笛卡尔积 &#x1f349;2.内连接&#x1f95d;查询单个数据&#x1f95d;查询多个数据 &#x1f349;3.外连接&#x1f349;4.自连接&#x1f349;5.合并查询 &#x1f349;1.联合查询 &#x1f95d;笛卡尔积 实际开发中往往数…...

【K8s】肿么办??Kubernetes Secrets并不是Secret哟!!

【K8s】肿么办??Kubernetes Secrets并不是Secret哟!! 目录 【K8s】肿么办??Kubernetes Secrets并不是Secret哟!!Kubernetes Secrets为什么不认为 Base64 编码是密文?问题出现了以下是几种加密 K8s Secrets 的选项。Bitnami Sealed Secrets 介绍Bitnami Sealed Secrets…...

数星星 刷题笔记 (树状数组)

依题意 要求每个点 x, y 的左下方有多少个星星 又因为 是按照y从小到大 给出的 所以 我们在计算个数的时候是按照y一层层变大来遍历的 因此我们在处理每一个点的时候 只需要看一下 当前的点有多少个点的x值比当前点小即可 树状数组的 操作模板 P3374 【模板】树…...

Windows→Linux,本地同步到服务器

适用背景&#xff1a; 用自己电脑修改代码&#xff0c;使用实验室/公司的服务器炼丹的朋友 优势&#xff1a; 本地 <--> 服务器&#xff0c;实时同步&#xff0c;省去文件传输的步骤 本地改 -> 自动同步到服务器 -> 服务器跑代码 -> 一键同步回本地&#xff…...

Pycharm连接远程服务器Anoconda中的虚拟环境

在配置远程解释器时&#xff0c;踩过一些坑&#xff0c;现在记录一下配置过程&#xff1a; 步骤1&#xff1a; 打开pycharm的File里面的Settings 里面的Project:你的项目名称目录下的Python Interpreter。 步骤二&#xff1a; 点击右上角的“add interpreter”&#xff0c;选择…...

无人机自动返航算法实现与优化

一、引言 随着无人机技术的快速发展&#xff0c;其在航拍、农业、救援等领域的应用越来越广泛。在这些应用中&#xff0c;无人机的自动返航功能显得尤为重要。一旦无人机失去控制或与遥控器失去连接&#xff0c;自动返航算法能够确保无人机安全返回起飞点&#xff0c;避免损失和…...

切面条-蓝桥杯?-Lua 中文代码解题第1题

切面条-蓝桥杯&#xff1f;-Lua 中文代码解题第1题 一根高筋拉面&#xff0c;中间切一刀&#xff0c;可以得到2根面条。 如果先对折1次&#xff0c;中间切一刀&#xff0c;可以得到3根面条。 如果连续对折2次&#xff0c;中间切一刀&#xff0c;可以得到5根面条。 那么&#xf…...

WebRTC:真正了解 RTP 和 RTCP

介绍 近年来&#xff0c;通过互联网进行实时通信变得越来越流行&#xff0c;而 WebRTC 已成为通过网络实现实时通信的领先技术之一。WebRTC 使用多种协议&#xff0c;包括实时传输协议 (RTP) 和实时控制协议 (RTCP)。 RTP负责通过网络传输音频和视频数据&#xff0c;而RTCP负责…...

vue实现双向绑定原理深度解析

1. vue双向绑定应用场景 Vue的双向绑定机制主要体现在以下几个方面: 表单输入:在表单输入中,Vue的双向绑定机制非常有用。通过v-model指令,可以将表单元素的值与Vue实例中的数据进行双向绑定,当用户在表单输入框中输入内容时,数据会自动更新,反之,当数据发生变化时,输…...

C语言 —— memeove函数的模拟实现

函数作用&#xff1a;从sourse的位置开始向后复制num个字节到desttintion指向的内存位置&#xff0c;&#xff08;运用于字符时&#xff0c;遇到\0不会停止&#xff09;&#xff0c;这个函数支持重叠部分的复制&#xff0c;是memcpy函数的改进版本 具体步骤&#xff1a; 1&am…...

<el-tab>样式自定义——一个可以触类旁通的小例子

首先在网页的检查确定想要自定义的部分叫什么 例如&#xff1a; 我想修改的组件是el-tabs__header.is-top 的margin-bottom 则在相应vue文件的<style>里面增加这一属性 其中&#xff0c;::v-deep可以帮助覆盖子组件内部元素的样式。 ::v-deep .el-tabs__header.is-to…...

XDP学习笔记

XDP的使用与eBPF程序分不开&#xff0c;因此要了解学历XDP&#xff0c;须知道什么是eBPF、什么是XDP。 概念 eBPF BPF&#xff08;Berkeley Packet Filter&#xff09;是一种灵活且高效的数据包过滤技术&#xff0c;最初由 BSD Unix 中的网络子系统引入&#xff1b;BPF 允许用…...

JavaScript进阶:js的一些学习笔记-4

文章目录 1. 拷贝1. 浅拷贝2. 深拷贝 2. 异常处理 1. 拷贝 这里指的拷贝是指拷贝引用类型的数据(对象) 1. 浅拷贝 拷贝对象&#xff1a;Object.assign() 或者 {…obj} 展开运算符 const obj {name:liuze,age:23 } const o {...obj}; o.age 22; console.log(o); console.…...

【可能是全网最丝滑的LangChain教程】三、快速入门LLMChain

系列文章地址 【可能是全网最丝滑的LangChain教程】一、LangChain介绍 【可能是全网最丝滑的LangChain教程】二、LangChain安装 使用LangChain构建应用 LangChain支持构建应用程序&#xff0c;将外部数据源和计算源连接到LLM。我们将从一个简单的 LLM 链开始&#xff0c;它…...

Oracle Primavera Analytics 是什么,与P6的关系?

前言 Oracle Primavera P6 Analytics 是与P6有关的一个相对较新的模块&#xff0c;Primavera 用户社区在很大程度上尚未对其进行探索。 那么它到底有什么作用呢&#xff1f; 通过了解得知它旨在通过深入了解组织的项目组合绩效&#xff0c;帮助高级管理层对其项目组合做出更好…...

在 Amazon Bedrock 上使用 Anthropic Claude 系统 Prompt

系统 prompt 是定义生成式 AI 模型对用户输入的响应策略的一种好方法。这篇博文将介绍什么是系统 prompt&#xff0c;以及如何在基于 Anthropic Claude 2.x 和 3 的应用中使用系统 prompt。 亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例…...

【LeetCode】动态规划--题目练习

有关动态规划算法的整理&#xff1a;添加链接描述 1.爬楼梯 爬楼梯:LeetCode70 int climbStairs(int n) {//1.确定dp数组和意义 dp[n]表示第n阶的方法//2.确定递推关系式 dp[n] dp[n-1]dp[n-2];//3.初始化int dp[50] {0};dp[1] 1;dp[2] 2;for(int i 3;i<n;i){dp[i] …...

【LeetCode热题100】101. 对称二叉树(二叉树)

一.题目要求 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 二.题目难度 简单 三.输入样例 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true 示例 2&#xff1a; 输入&#xff1a;root [1,2,2,null,3,null,3] 输出&a…...

VLC抓取m3u8视频

前言 最近想看一些网络视频&#xff0c;但是很多时候网页上是m3u8推流的&#xff0c;如果在线看&#xff0c;速度又慢&#xff0c;所以就想下载下来&#xff0c;就想到了VLC的推流&#xff0c;转换能力&#xff0c;查阅资料&#xff0c;加上实践&#xff0c;总结心得。 设置中…...

聊聊Python都能做些什么

文章目录 一、Python简介二、Python都能做些什么1. Web开发2. 数据分析和人工智能3. 自动化运维和测试4. 网络爬虫5. 金融科技 三、Python开源库都有哪些1. Web开发2. 数据分析和科学计算3. 机器学习和深度学习4. 网络爬虫5. 自动化和测试6. 其他常用库 四、相关链接 一、Pytho…...

JavaWeb06-MVC和三层架构

目录 一、MVC模式 1.概述 2.好处 二、三层架构 1.概述 三、MVC与三层架构 四、练习 一、MVC模式 1.概述 MVC是一种分层开发的模式&#xff0c;其中 M&#xff1a;Model&#xff0c;业务模型&#xff0c;处理业务 V&#xff1a; View&#xff0c;视图&#xff0c;界面展…...

MySQL数据库实现增删改查基础操作

准备工作 安装mysql8.0 (安装时一定要记住用户名和密码)安装数据库可视化视图工具Navicat 请注意⚠️⚠️⚠️⚠️ a. 编程类所有软件不要安装在中文目录下 b. Navicat破解版下载安装教程&#xff1a;&#xff08;由于文章审核提示版权问题&#xff0c;链接不方便给出&#xff…...

PCM和I2S区别

I2S和PCM接口都是数字音频接口&#xff0c;而所见的蓝牙到cpu以及codec的音频接口都是用PCM接口&#xff0c;是不是两个接口有各自不同的应用呢&#xff1f;先来看下概念。 PCM&#xff08;PCM-clock、PCM-sync、PCM-in、PCM-out&#xff09;脉冲编码调制&#xff0c;模拟语音信…...