【GPT-SOVITS-04】SOVITS 模块-鉴别模型解析
说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。
知乎专栏地址:
语音生成专栏
系列文章地址:
【GPT-SOVITS-01】源码梳理
【GPT-SOVITS-02】GPT模块解析
【GPT-SOVITS-03】SOVITS 模块-生成模型解析
【GPT-SOVITS-04】SOVITS 模块-鉴别模型解析
【GPT-SOVITS-05】SOVITS 模块-残差量化解析
【GPT-SOVITS-06】特征工程-HuBert原理
1.SOVITS 鉴别器
1.1、概述
GPT-SOVITS 在鉴别器这块在SOVITS原始版本上做了简化,先回顾下SOVITS的鉴别器。主要包含三类:

各个鉴别器的输出都包括两类,即各层中间输出和最终结果输出,分别用来计算特征损失和生成损失。如下:

1.2、MRD举例

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm, spectral_normclass DiscriminatorR(torch.nn.Module):def __init__(self, hp, resolution):super(DiscriminatorR, self).__init__()self.resolution = resolutionself.LRELU_SLOPE = hp.mpd.lReLU_slopenorm_f = weight_norm if hp.mrd.use_spectral_norm == False else spectral_normself.convs = nn.ModuleList([norm_f(nn.Conv2d(1, 32, (3, 9), padding=(1, 4))),norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), padding=(1, 4))),norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), padding=(1, 4))),norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), padding=(1, 4))),norm_f(nn.Conv2d(32, 32, (3, 3), padding=(1, 1))),])self.conv_post = norm_f(nn.Conv2d(32, 1, (3, 3), padding=(1, 1)))def forward(self, x):fmap = []# 获取频谱,这里是做了窗口傅里叶变换# 傅里叶变换时,频谱数量、窗口的移动、窗口大小由参数 resolution 决定x = self.spectrogram(x)x = x.unsqueeze(1)for l in self.convs:# 与其他鉴别器一样经过conv-1d 和 leak-relue 形成中间层特征x = l(x)x = F.leaky_relu(x, self.LRELU_SLOPE)# 中间层特征被保存在 fmap 中fmap.append(x)x = self.conv_post(x)fmap.append(x)x = torch.flatten(x, 1, -1)# 返回各层的中间层特征 fmap 和 最终输出 xreturn fmap, xdef spectrogram(self, x):n_fft, hop_length, win_length = self.resolutionx = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect')x = x.squeeze(1)x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=False) #[B, F, TT, 2]mag = torch.norm(x, p=2, dim =-1) #[B, F, TT]return magclass MultiResolutionDiscriminator(torch.nn.Module):def __init__(self, hp):super(MultiResolutionDiscriminator, self).__init__()self.resolutions = eval(hp.mrd.resolutions)self.discriminators = nn.ModuleList([DiscriminatorR(hp, resolution) for resolution in self.resolutions])def forward(self, x):ret = list()# 这里做了一个不同尺度的 DiscriminatorR"""在 base.yml 中 mrd 的参数如下,有四个不同的尺度:mrd:resolutions: "[(1024, 120, 600), (2048, 240, 1200), (4096, 480, 2400), (512, 50, 240)]" # (filter_length, hop_length, win_length)use_spectral_norm: FalselReLU_slope: 0.2"""for disc in self.discriminators:ret.append(disc(x))return ret # [(feat, score), (feat, score), (feat, score)]
2.GPT-SOVITS 鉴别器
2.1、主要更改
GPT-SOVITS 鉴别器结构与 SOVITS基本类似,只是去除了多分辨率鉴别器,其余基本一样,包括多周期鉴别器的尺度也是 2, 3, 5, 7, 11。其返回结果也包含最终【生成鉴别结果】和各层输出【特征鉴别结果】两类。
class MultiPeriodDiscriminator(torch.nn.Module):def __init__(self, use_spectral_norm=False):super(MultiPeriodDiscriminator, self).__init__()periods = [2, 3, 5, 7, 11]discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]self.discriminators = nn.ModuleList(discs)def forward(self, y, y_hat):y_d_rs = []y_d_gs = []fmap_rs = []fmap_gs = []for i, d in enumerate(self.discriminators):y_d_r, fmap_r = d(y) # 原始音频输入,返回鉴别结果y_d_g, fmap_g = d(y_hat) # 推测音频输入,返回鉴别结果y_d_rs.append(y_d_r)y_d_gs.append(y_d_g)fmap_rs.append(fmap_r)fmap_gs.append(fmap_g)return y_d_rs, y_d_gs, fmap_rs, fmap_gs
2.2、损失函数
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_melloss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_klloss_fm = feature_loss(fmap_r, fmap_g)loss_gen, losses_gen = generator_loss(y_d_hat_g)
如前文所述,这里特征损失基于各层输出,计算逻辑在 feature_loss
def feature_loss(fmap_r, fmap_g):loss = 0for dr, dg in zip(fmap_r, fmap_g):for rl, gl in zip(dr, dg):rl = rl.float().detach()gl = gl.float()loss += torch.mean(torch.abs(rl - gl))return loss * 2
最终生成损失判别基于最终结果,计算逻辑在 generator_loss
def generator_loss(disc_outputs):loss = 0gen_losses = []for dg in disc_outputs:dg = dg.float()l = torch.mean((1 - dg) ** 2)gen_losses.append(l)loss += lreturn loss, gen_losses
相关文章:
【GPT-SOVITS-04】SOVITS 模块-鉴别模型解析
说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…...
论文阅读_时序模型_iTransformer
1 2 3 4 5 6 7 8英文名称: ITRANSFORMER: INVERTED TRANSFORMERS ARE EFFECTIVE FOR TIME SERIES FORECASTING 中文名称: ITRANSFORMER:倒置Transformers在时间序列预测中的有效性 链接: https://openreview.net/forum?idX6ZmOsTYVs 代码: https://github.com/thum…...
Docker 哲学 - 容器操作 -cp
1、拷贝 容器绑定的 volume的 数据,到指定目录 2、匿名挂载 volume 只定义一个数据咋在容器内的path,docker自动生成一个 sha256 的key作为 volume 名字。这个 sha256 跟 commitID 一致都是唯一的所以 ,docker利用这个机制,可以…...
作品展示ETL
1、ETL 作业定义、作业导入、控件拖拽、执行、监控、稽核、告警、报告导出、定时设定 欧洲某国电信系统数据割接作业定义中文页面(作业顶层,可切英文,按F1弹当前页面帮助) 涉及文件拆分、文件到mysql、库到库、数据清洗、数据转…...
python的集合应用
在Python中,集合是一种无序、可变的数据类型,用于存储不重复的元素。Python提供了内置的集合类型 set,以及 frozenset(不可变的集合)。以下是一些Python集合的常见应用场景: 去重: 集合是存储唯…...
盒子IM开源仿微信聊天程序源码,可以商用
安装教程 1.安装运行环境 安装node:v14.16.0安装jdk:1.8安装maven:3.6.3安装mysql:5.7,密码分别为root/root,运行sql脚本(脚本在im-platfrom的resources/db目录)安装redis:5.0安装minio,命令端口使用9001,并创建一个名为”box-im”的bucket,…...
鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:Web)中篇
onBeforeUnload onBeforeUnload(callback: (event?: { url: string; message: string; result: JsResult }) > boolean) 刷新或关闭场景下,在即将离开当前页面时触发此回调。刷新或关闭当前页面应先通过点击等方式获取焦点,才会触发此回调。 参数…...
静默安装OGG21.3微服务版本FOR ORACLE版本
静默安装OGG21.3微服务版本FOR ORACLE版本 silent install ogg21.3 for oracle 某度找来找去都没有找到一份可靠的静默安装OGG21.3微服务版本的案例,特别难受,为此将自己静默安装的步骤一步步贴出来分享给大家,请指点,谢谢。 至…...
[二分查找]LeetCode2040:两个有序数组的第 K 小乘积
本文涉及的基础知识点 二分查找算法合集 题目 给你两个 从小到大排好序 且下标从 0 开始的整数数组 nums1 和 nums2 以及一个整数 k ,请你返回第 k (从 1 开始编号)小的 nums1[i] * nums2[j] 的乘积,其中 0 < i < nums1.…...
【Godot4.2】颜色完全使用手册
概述 本篇简单汇总Godot中的颜色的构造和使用,内容包括了: RGB、RGBA,HSV以及HTML16进制颜色值、颜色常量等形式构造颜色颜色的运算以及取反、插值用类型化数组、紧缩数组或PNG图片形式存储多个颜色 构造颜色 因为颜色是一种视觉元素&…...
Blocks —— 《Objective-C高级编程 iOS与OS X多线程和内存管理》
目录 Blocks概要什么是BlocksOC转C方法关于几种变量的特点 Blocks模式Block语法Block类型 变量截获局部变量值__block说明符截获的局部变量 Blocks的实现Block的实质 Blocks概要 什么是Blocks Blocks是C语言的扩充功能,即带有局部变量的匿名函数。 顾名思义&#x…...
Python零基础---爬虫技术相关
python 爬虫技术,关于数据相关的拆解: 1.对页面结构的拆解 2.数据包的分析(是否加密了参数)(Md5 aes)难易程度,价格 3.对接客户(433,334) # 数据库 CSV 4.结单(发一部分数据&a…...
利用 STM32 TIMER 触发 ADC 实现分组转换
1、问题描述 使用 STM32G4 系列芯片开发产品,用到其中一个 ADC 模块的多个通道,他希望使 用 TIMER 来定时触发这几个通道的转换。不过他有两点疑惑。第一,他期望定时器触发这几个 通道是每触发一次则只转换一个通道,这样依次触发…...
2024 年(第 12 届)“泰迪杯”数据挖掘挑战赛——B 题:基于多模态特征融合的图像文本检索完整思路与源代码分享
一、问题背景 随着近年来智能终端设备和多媒体社交网络平台的飞速发展,多媒体数据呈现海量增长 的趋势,使当今主流的社交网络平台充斥着海量的文本、图像等多模态媒体数据,也使得人 们对不同模态数据之间互相检索的需求不断增加。有效的信…...
Java12~14 switch语法
JDK8以后的语法没学习了,现在时代发展这么快,所以得加紧时间学习了。JDK12只有一个特性就是switch语法,算是比较容易学习的一个版本吧。总体来说就是三部分内容。具体内容可以看JEP-325的内容。 箭头语法 每个case可以放箭头了。以下是一个例…...
小狐狸ChatGPT智能聊天系统源码v2.7.6全开源Vue前后端+后端PHP
测试环境包括Linux系统的CentOS 7.6,宝塔面板,PHP 7.4和MySQL 5.6。网站的根目录是public, 使用thinkPHP进行伪静态处理,并已开启SSL证书。 该系统具有多种功能,包括文章改写、广告营销文案创作、编程助手、办公达人…...
The Rise and Potential of Large Language Model Based Agents: A Survey
OpenAI AI的应用研究主管Lilian Weng发布了关于AI Agents的《大语言模型(LLM)支持的自主代理》,在文章中她定义了基于LLM构建AI Agents的应用框架:AgentLLM(大型语言模型)记忆(Memory࿰…...
【GPT-SOVITS-06】特征工程-HuBert原理
说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…...
ros小问题之差速轮式机器人轮子不显示(rviz gazebo)
在rviz及gazebo练习差速轮式机器人时,很奇怪,只有个机器人的底板及底部的两个万向轮,如下图, 后来查看相关.xacro文件,里面是引用包含了轮子的xacro文件,只需传入不同的参数即可调用生成不同位置的轮子&…...
网络安全实训Day5
写在前面 昨天忘更新了......讲的内容不多,就一个NAT。 之前记的NAT的内容:blog.csdn.net/Yisitelz/article/details/131840119 网络安全实训-网络工程 NAT 公网地址与私网地址 公网地址 可以在互联网上被寻址,由运营商统一分配全球唯一的I…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
ui框架-文件列表展示
ui框架-文件列表展示 介绍 UI框架的文件列表展示组件,可以展示文件夹,支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项,适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...
聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...
