PSNR/SSIM/LPIPS图像质量评估三件套(含代码)
在图像质量评估上,有三个重要指标:PSNR,SSIM,LPIPS。本文提供简易脚本分别实现。
PSNR,峰值信噪比,是基于MSE的像素比较低质量评估,一般30dB以上质量就不错,到40dB以上肉眼就很难分别了。
SSIM,结构相似性,从分布上来比较相似性,量化到(0-1)之间,越接近1则证明图像质量越好。具体数学公式可以看我之前的博客《SSIM》。
LPIPS,利用AI模型来量化图像之间的相似性。取值范围也是[0,1],与SSIM相反,LPIPS是越小则证明图像质量越好。
像这种常见的图像质量评价指标,都会收录到torchmetrics里面。只需安装:
pip install torchmetrics
实验脚本:
import torch
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
from torchmetrics.image import StructuralSimilarityIndexMeasure
from torchmetrics.image import PeakSignalNoiseRatio_ = torch.manual_seed(123)def psnr_torch(img1, img2):mse = ((img1 - img2) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True)return 20 * torch.log10(1.0 / torch.sqrt(mse))def psnr(img1, img2):metric = PeakSignalNoiseRatio()return metric(img1, img2)def ssim(img1, img2):metric = StructuralSimilarityIndexMeasure(data_range=1.0)return metric(img1, img2)def lpips(img1, img2):metric = LearnedPerceptualImagePatchSimilarity(net_type='vgg')return metric(img1, img2)def _main():img1 = torch.rand(1, 3, 100, 100)img2 = torch.rand(1, 3, 100, 100)# PSNRprint("PNSR: ", psnr_torch(img1, img2))print("PNSR1: ", psnr(img1, img2))print("SSIM: ", ssim(img1, img2))print("LPIPS: ", lpips(img1, img2))if __name__ == "__main__":_main()
代码里给了两种PSNR实现方法,计算结果差别不大。欢迎自取~
相关文章:
PSNR/SSIM/LPIPS图像质量评估三件套(含代码)
在图像质量评估上,有三个重要指标:PSNR,SSIM,LPIPS。本文提供简易脚本分别实现。 PSNR,峰值信噪比,是基于MSE的像素比较低质量评估,一般30dB以上质量就不错,到40dB以上肉眼就很难分…...

20240318uniapp怎么引用组件
在script中增加 import index from "/pages/index/index.vue" 把index直接整个作为一个组件引入 然后注册组件 在export default中增加 components: {index:index }, 注册了index组件,内容为import的index 然后就可以在template里使用 <index&…...

扩展以太网(数据链路层)
目录 一、在物理层扩展以太网 二、在数据链路层扩展以太网 三、以太网交换机的特点 四、以太网交换机的交换方式 五、以太网交换机的自学习功能 六、小结 一、在物理层扩展以太网 使用光纤扩展: • 主机使用光纤(通常是一对光纤)和…...
每日一练 | 华为认证真题练习Day202
1、在组播网络环境中,如果IGMPv2主机和IGMP V1路由器(以下简称版本2主机和版本1路由器)共同处于同一局域网当中,那他们是如何协同工作的?(多选) A. 版本1路由器把IGMPv2报告看作无效的IGMP信息…...

基于python+vue的幼儿园管理系统flask-django-php-nodejs
随着信息时代的来临,过去的传统管理方式缺点逐渐暴露,对过去的传统管理方式的缺点进行分析,采取计算机方式构建幼儿园管理系统。本文通过课题背景、课题目的及意义相关技术,提出了一种活动信息、课程信息、菜谱信息、通知公告、家…...

【java】java环境变量分类
测试代码: public class TestSys {public static void main(String[] args) {/*** 获取所有的系统环境变量*/Map<String, String> map System.getenv();map.forEach((key, value) -> System.out.printf("env:key:%s->value:%s%n"…...
掌握Go语言:Go语言通道,并发编程的利器与应用实例(20)
通道(Channel)是用来在 Go 程序中传递数据的一种数据结构。它是一种类型安全的、并发安全的、阻塞式的数据传输方式,用于在不同的 Go 协程之间传递消息。 基本概念 创建通道:使用make()函数创建一个通道。 ch : make(chan int)…...
JavaSE(上)-Day9
JavaSE(上)-Day9 集合static静态变量静态方法静态方法的注意事项重新认识main方法 继承继承注意事项子类到底能继承父类哪些内容继承中成员变量和成员方法的访问特点重写构造方法的访问特点this & super 集合 因为数组是不可变的,我们在…...
Java 内存模型概述
Java 内存区域 引言: 在并发编程中,需要解决两个问题:线程之间如何通信和线程之间如何同步 通信是指线程之间以何种机制来交换信息 在命令式编程中,通信机制主要分为两种:共享内存和消息传递 Java 的并发采用的是…...

远程桌面安卓版下载 安卓远程控制免费版
远程桌面安卓版下载与安卓远程控制免费版的应用解析 随着移动互联网的快速发展,远程桌面应用逐渐成为了许多用户、特别是技术爱好者和商务人士的必备工具。它们不仅可以在电脑上实现远程控制,还能将这种功能延伸到移动设备上,如安卓手机和平…...

算法打卡day18|二叉树篇07|Leetcode 530.二叉搜索树的最小绝对差、501.二叉搜索树中的众数、236. 二叉树的最近公共祖先
算法题 Leetcode 530.二叉搜索树的最小绝对差 题目链接:530.二叉搜索树的最小绝对差 大佬视频讲解:二叉搜索树的最小绝对差视频讲解 个人思路 因为是在二叉搜索树求绝对差,而二叉搜索树是有序的,那就把它想成在一个有序数组上求最值&…...
MySQL 中的自增ID及其应用场景
在MySQL中,自增ID主要体现在几种不同的场景下,每种自增ID都有其特定用途和行为特征: 1. Auto-Increment ID (PRIMARY KEY AUTO_INCREMENT) 场景:在创建表时,可以为某个整数字段设置AUTO_INCREMENT属性,生成…...

ChatGPT高效完成简历制作[中篇4]-有爱AI实战教程(十一)
演示站点: https://ai.uaai.cn 对话模块 官方论坛: www.jingyuai.com 京娱AI 一、导读: 在使用 ChatGPT 时,当你给的指令越精确,它的回答会越到位,举例来说,假如你要请它帮忙写文案,…...
5.2.5、【AI技术新纪元:Spring AI解码】VertexAI Embeddings
基于Models REST API的PaLM API允许开发者利用下一代大型语言模型PaLM构建生成式AI应用。大型语言模型(LLMs)是一种强大的、多用途的机器学习模型,通过一系列提示使计算机能够理解和生成自然语言。PaLM API基于Google的下一代LLM PaLM,擅长多种任务,包括代码生成、推理和文…...

【vue baidu-map】实现百度地图展示基地,鼠标悬浮标注点展示详细信息
实现效果如下: 自用代码记录 <template><div class"map" style"position: relative;"><baidu-mapid"bjmap":scroll-wheel-zoom"true":auto-resize"true"ready"handler"><bm-mar…...
uniapp canvas文字和元素居中
文字居中:ctx.textAlign "center"; 元素居中:ctx.arc(screenWidth / 2, 122, 40, 0, 2 * Math.PI); ctx.arc()的x轴为当前屏幕的宽度/2; let screenWidth 540; let screenHeight 960; // 头像 if (photoimg) {ctx.setFillSty…...
深度探索:SWAT模型和生物地球化学循环模型实现流域生态系统水-碳-氮耦合过程模拟
目录 专题一 流域水碳氮建模概述 专题二 ArcGIS入门 专题三 SWAT模型建模流程 专题四 DEM数据制备流程 专题五 土地利用数据制备流程 专题六 土壤数据制备流程 专题七 气象数据制备流程 专题八 农业措施数据制备流程 专题九 参数率定与结果验证 专题十 CENTURY模型建…...

C语言经典算法-5
文章目录 其他经典例题跳转链接26.约瑟夫问题(Josephus Problem)27.排列组合28.格雷码(Gray Code)29.产生可能的集合30.m元素集合的n个元素子集 其他经典例题跳转链接 C语言经典算法-1 1.汉若塔 2. 费式数列 3. 巴斯卡三角形 4. …...
python与excel第二节
python与excel第二节 打开一个工作簿 例子: import xlwings as xw app xw.App(visibleTrue,add_bookFalse) workbook app.books.open(rD:\TEST\python与excel\工作簿test0.xlsx) 上面例子打开了工作簿test0.xlsx。 但是,如果该excel文件不存在则报错…...

Google云计算原理与应用(四)
目录 七、海量数据的交互式分析工具Dremel(一)产生背景(二)数据模型(三)嵌套式的列存储(四)查询语言与执行(五)性能分析(六)小结 八、…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
安卓基础(Java 和 Gradle 版本)
1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
Python学习(8) ----- Python的类与对象
Python 中的类(Class)与对象(Object)是面向对象编程(OOP)的核心。我们可以通过“类是模板,对象是实例”来理解它们的关系。 🧱 一句话理解: 类就像“图纸”,对…...
【Ftrace 专栏】Ftrace 参考博文
ftrace、perf、bcc、bpftrace、ply、simple_perf的使用Ftrace 基本用法Linux 利用 ftrace 分析内核调用如何利用ftrace精确跟踪特定进程调度信息使用 ftrace 进行追踪延迟Linux-培训笔记-ftracehttps://www.kernel.org/doc/html/v4.18/trace/events.htmlhttps://blog.csdn.net/…...