大数据开发(Hive面试真题-卷三)
大数据开发(Hive面试真题)
- 1、Hive的文件存储格式都有哪些?
- 2、Hive的count的用法?
- 3、Hive得union和unionall的区别?
- 4、Hive的join操作原理,left join、right join、inner join、outer join的异同?
- 5、Hive的mapjoin?
- 6、Hive Shuffle的具体过程?
- 7、UDF是怎么在Hive里执行的?
- 8、Hive HQL:行转列、列转行?
1、Hive的文件存储格式都有哪些?
- 文本文件格式(TextFile):以文本形式存储数据,每一行都是一个记录,字段之间使用分隔符进行分割。
- 序列文件格式(SequenceFile):一种二进制文件格式,数据以键值对的形式存储,适用于大数据量的存储和读取。
- 列式存储格式(Columnar formats):例如Parquet和ORC等,以列为单位存储数据,提供更高的压缩比和查询性能。
- Avro格式:一种数据序列化系统,支持动态类型,适用于复杂数据结构的存储。
- RCFile格式(Record Columnar File):一种列式存储格式,将每个列的数据存储在单独的文件中,提供高效的读取和查询性能。
- JSON格式(JsonFile):以JSON格式存储数据,适用于半结构化数据的存储。
- CSV格式:以逗号分割的文本文件格式,适用于简单的表格数据存储。
2、Hive的count的用法?
- Hive中的count函数用于计算指定列或整个表中的行数。它的用法如下:
SELECT COUNT(*) FROM table_name;
- 计算指定列的非空值的个数:
SELECT COUNT(column_name) FROM table_name;
- 计算指定列的唯一值的个数:
SELECT COUNT(DISTINCT column_name) FROM table_name;
3、Hive得union和unionall的区别?
Hive中的UNION和UNION ALL都是用于合并多个查询结果集的操作,但它们之间有一些区别。
- UNION会删除重复的行,而UNION ALL会保留所有行,包括重复的行。
- UNION操作符会对两个查询结果的列进行匹配,要求它们的数据类型和顺序完全一致,而UNION ALL不会进行列匹配。
- UNION操作符会对结果进行排序,以消除重复行,而UNION ALL不会进行排序,因此性能上可能会更快一些。
- UNION操作符默认会去除NULL值,而UNION ALL会保留NULL值。
因此,如果你需要合并多个结果集并消除重复行,你可以使用UNION操作符。而如果你想保留所有行,包括重复的行,可以使用UNION ALL操作符。
4、Hive的join操作原理,left join、right join、inner join、outer join的异同?
- Inner Join(内连接):它返回两个表中满足连接条件的记录。只有在两个表中都有匹配的记录时,才会返回结果。
- Left Join(左连接):它返回左表中所有记录以及与右边匹配的记录。如果右表中没有匹配的记录,则返回NULL。
- Right Join(右连接):它返回右表中所有记录以及与左表匹配的记录。如果左表中没有匹配的记录,则返回NULL。
- Outer Join(外连接):它返回左表和右表中的所有记录。如果两个表中没有匹配的记录,则返回NULL。
5、Hive的mapjoin?
Hive的mapjoin是一种优化技术,用于加快Hive查询的速度。它通过将小表加载到内存中,然后在Map阶段将大表的数据与小表的数据进行连接,从而减少了磁盘读写操作和网络传输开销。
具体来说,Hive的mapjoin分为两种类型:
- Map端的mapjoin(Map-side Join):当一个表的数据量足够小,可以将其全部加载到内存中时,Hive会将这个表的数据复制到所有的Map任务中,然后在Map任务中直接进行连接操作。这样可以避免Shuffle阶段的数据传输和磁盘I/O,大大提高了查询速度。
- Bucket Map端的mapjoin:当两个表都被分桶时,Hive可以使用Bucket Map端的mapjoin。它将两个表的桶按照相同的桶号分发到同一个Map任务中,然后再Map任务中进行连接操作。这样可以减少Shuffle阶段的数据传输和磁盘I/O,提高查询效率。
需要注意的是,使用mapjoin的前提是小表可以完全加载到内存中,否则可能会导致内存不足的问题。此外,mapjoin也只适用于等值连接(Equi-Join),不支持其它类型的连接操作。
6、Hive Shuffle的具体过程?
Hive的Shuffle过程是在Hive执行MapReduce任务时发生的数据重分区和排序过程。它是为了将具有相同键的数据项聚集再同一个Reducer任务中,以便进行数据的合并和计算。
具体的Hive Shuffle过程如下:
- Map阶段:在Map阶段,输入数据会根据指定的分区键进行哈希分区,即根据分区键的哈希值将数据分配到对应的Reducer任务中。同时,Map阶段会对每个分区键进行局部排序,保证每个分区内的数据按照分区键的顺序排列。
- Combiner阶段:如果在Hive查询中定义了Combiner函数,那么在Map阶段的输出结果会经过Combiner函数的合并操作。Combiner函数可以对相同分区键的数据进行合并,以减少数据传输量和提高性能。
- Partitioner阶段:在Map阶段结束后,Hive会调用Partitioner函数对Map输出结果进行再次分区。Partitioner函数决定了数据项如何分布到不同的Reducer任务中。通常情况下,Partitioner函数会根据分区键的哈希值将数据项均匀地分配到不同的Reducer任务中。
- Sort阶段:在Partitioner阶段之后,Hive会对每个Reducer任务的输入数据进行全局排序。这个排序操作保证了每个Reducer任务的输入数据按照分区键的顺序进行处理。
- Reduce阶段:在Reduce阶段,每个Reducer任务会接收到属于自己分区的数据块,并进行最终的聚合和计算操作。Reducer任务会对输入数据进行迭代处理,输出最终的结果。
7、UDF是怎么在Hive里执行的?
UDF是在Hive中执行的一种自定义函数。当在Hive中定义一个UDF后,它可以在Hive查询中使用,以对数据进行转换、计算或其它操作。
执行过程如下:
- 首先,开发人员需要使用Java或其它编程语言编写UDF的代码。UDF代码需要实现Hive UDF接口,并定义输入和输出参数的类型。
- 然后,将编写的UDF代码编译成可执行的JAR文件。
- 接下来,将JAR文件上传到Hive的集群环境中,并将其添加到Hive的类路径中。
- 在Hive中创建一个函数,将该数据与上传的JAR文件中的UDF代码关联起来。这可以通过使用Hive的CREATE FUNCTION语句来完成。
- 一旦函数创建完毕,就可以在Hive查询中调用该函数,并将其应用于数据。
- 当Hive查询中调用UDF时,Hive会根据函数的定义和输入参数类型,调用上传的JAR文件中的对应UDF代码。
- UDF代码将执行相应的计算或转换操作,并返回结果给Hive查询。
8、Hive HQL:行转列、列转行?
Hive HQL中可以使用Pivot操作实现行转列和列转行的功能。
行转列(行数据转为列):
在 Hive 中,可以使用 Pivot 操作将行数据转为列。Pivot 操作需要使用聚合函数和 CASE WHEN 语句来实现。
例如,假设我们有一个表格包含以下数据:
+----+------+-------+
| ID | Name | Value |
+----+------+-------+
| 1 | A | 10 |
| 1 | B | 20 |
| 2 | A | 30 |
| 2 | B | 40 |
+----+------+-------+
我们可以使用 Pivot 操作将上述数据按 ID 列进行行转列:
SELECT ID,
MAX(CASE WHEN Name = 'A' THEN Value END) AS Value_A,
MAX(CASE WHEN Name = 'B' THEN Value END) AS Value_B
FROM table_name
GROUP BY ID;
执行上述查询后,可以得到如下结果:
+----+---------+---------+
| ID | Value_A | Value_B |
+----+---------+---------+
| 1 | 10 | 20 |
| 2 | 30 | 40 |
+----+---------+---------+
列转行(列数据转为行):
Hive 中可以使用 UNION ALL 操作将列数据转为行数据。
假设我们有一个表格包含以下数据:
+----+------+-------+
| ID | Name | Value |
+----+------+-------+
| 1 | A | 10 |
| 1 | B | 20 |
| 2 | A | 30 |
| 2 | B | 40 |
+----+------+-------+
我们可以使用 UNION ALL 操作将上述数据按 Name 列进行列转行:
SELECT ID, 'A' AS Name, Value FROM table_name WHERE Name = 'A'
UNION ALL
SELECT ID, 'B' AS Name, Value FROM table_name WHERE Name = 'B';
执行上述查询后,可以得到如下结果:
+----+------+-------+
| ID | Name | Value |
+----+------+-------+
| 1 | A | 10 |
| 2 | A | 30 |
| 1 | B | 20 |
| 2 | B | 40 |
+----+------+-------+
这样我们就可以将列数据转为行数据。.
相关文章:
大数据开发(Hive面试真题-卷三)
大数据开发(Hive面试真题) 1、Hive的文件存储格式都有哪些?2、Hive的count的用法?3、Hive得union和unionall的区别?4、Hive的join操作原理,left join、right join、inner join、outer join的异同࿱…...
Oracle数据库SQL开发规范
Oracle数据库SQL开发规范是为了保证SQL代码的质量、可读性和性能而遵循的一系列准则和最佳实践。以下是一些常见的Oracle SQL开发规范要点: 1. 命名规范 使用有意义且一致的命名约定,例如表名采用TBL_MODULE_NAME,视图采用VW_MODULE_VIEW等…...
FreeRTOS 消息队列
1. 队列简介 1.1 队列的概念 队列是任务到任务、任务到中断、中断到任务数据交流的一种机制(消息传递) 类似全局变量?假设有一个全局变量a 0,现有两个任务都在写这个变量 a: 大家想象一下如果任务 1 运行一次&#…...
如何在Python中实现列表推导式?并给出一个例子
如何在Python中实现列表推导式?并给出一个例子 Python的列表推导式(List Comprehension)是一种强大且简洁的创建列表的方法。它允许我们在一行代码中完成循环和条件判断,从而生成所需的列表。列表推导式不仅提高了代码的可读性&a…...
Flask中的Blueprints:模块化和组织大型Web应用【第142篇—Web应用】
👽发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 Flask中的Blueprints:模块化和组织大型Web应用 在构建大型Web应用时࿰…...
如何通过idea搭建一个SpringBoot的Web项目(最基础版)
通过idea搭建一个SpringBoot的Web项目 文章目录 通过idea搭建一个SpringBoot的Web项目一、打开idea,找到 create new project二、创建方式三、配置项目依赖四、新建项目模块五、总结 一、打开idea,找到 create new project 方式1 方式2 二、创建方式 新…...
Python和FastAPI语义分析和文本图像
要点 使用FastAPI开发RESTful API,创建端点,自定义响应,结构化多路由。Pydantic数据验证库数据建模,创建依赖项注入。开发数据库和对象关系映射,SQLAlchemy,Tortoise ORM,MongoDB。建立权限和安…...
centos系统ssh7.4升级9.6
编译安装 OpenSSL 下载 OpenSSL 源代码: wget https://www.openssl.org/source/openssl-1.1.1w.tar.gz这个命令从 OpenSSL 的官方网站下载指定版本(1.1.1w)的源代码压缩包。 解压源代码: tar zxvf openssl-1.1.1w.tar.gz使用 tar…...
excel所有知识点
1要加双引号 工作表(.xlsx) 单击右键→插入,删除,移动、重命名、复制、设置标签颜色,选定全部工作表 工作表的移动:两个表打开→右键→移动(如果右键是灰色的,可能是保护工作表了)…...
显卡基础知识及元器件原理分析
显卡应该算是是目前最为火热的研发方向了,其中的明星公司当属英伟达。 当地时间8月23日,英伟达发布截至7月30日的2024财年第二财季财报,营收和利润成倍增长,均超市场预期。 财报显示,第二财季英伟达营收为135.07 亿美…...
Spark Rebalance hint的倾斜的处理(OptimizeSkewInRebalancePartitions)
背景 本文基于Spark 3.5.0 目前公司在做小文件合并的时候用到了 Spark Rebalance 这个算子,这个算子的主要作用是在AQE阶段的最后写文件的阶段进行小文件的合并,使得最后落盘的文件不会太大也不会太小,从而达到小文件合并的作用,…...
Vue 3中实现基于角色的权限认证实现思路
一、基于角色的权限认证主要步骤 在Vue 3中实现基于角色的权限认证通常涉及以下几个主要步骤: 定义角色和权限:首先需要在后端服务定义不同的角色和它们对应的权限。权限可以是对特定资源的访问权限,比如读取、写入、修改等。用户认证&#…...
Visual Studio 2022进行文件差异比较
前言 Visual Studio 2022在版本17.7.4中发布在解决方案资源管理器中比较文件的功能,通过使用此功能,可以轻松地查看两个文件之间的差异,包括添加、删除和修改的代码行。可以逐行查看差异,并根据需要手动调整和编辑文件内容以进行…...
1.2 编译型语言和解释型语言的区别
编译型语言和解释型语言的区别 通过高级语言编写的源码,我们能够轻松理解,但对于计算机来说,它只认识二进制指令,源码就是天书,根本无法识别。源码要想执行,必须先转换成二进制指令。 所谓二进制指令&…...
C语言-常量
什么是常量? 答:常量是在程序执行过程中,其值不发生改变的量,常量分为直接常量和符号常量两种。 其中直接常量又可以分为整型常量、实型常量、字符型常量、字符串常量。 直接常量 1.整型常量 整型常量即整数,包括正整数,负整数和0。c语言中常量可以用八进制,十进制和十六…...
开源的OCR工具基本使用:PaddleOCR/Tesseract/CnOCR
前言 因项目需要,调研了一下目前市面上一些开源的OCR工具,支持本地部署,非调用API,主要有PaddleOCR/CnOCR/chinese_lite OCR/EasyOCR/Tesseract/chineseocr/mmocr这几款产品。 本文主要尝试了EasyOCR/CnOCR/Tesseract/PaddleOCR这…...
vue3实现输入框短信验证码功能---全网始祖
组件功能分析 1.按键删除,清空当前input,并跳转prevInput & 获取焦点,按键delete,清空当前input,并跳转nextInput & 获取焦点。按键Home/End键,焦点跳转first/最后一个input输入框。ArrowLeft/ArrowRight键点击…...
[C#]winformYOLO区域检测任意形状区域绘制射线算法实现
【简单介绍】 Winform OpenCVSharp YOLO区域检测与任意形状区域射线绘制算法实现 在现代安全监控系统中,区域检测是一项至关重要的功能。通过使用Winform结合OpenCVSharp库,并结合YOLO(You Only Look Once)算法,我们…...
个人网站制作 Part 14 添加网站分析工具 | Web开发项目
文章目录 👩💻 基础Web开发练手项目系列:个人网站制作🚀 添加网站分析工具🔨使用Google Analytics🔧步骤 1: 注册Google Analytics账户🔧步骤 2: 获取跟踪代码 🔨使用Vue.js&#…...
数据按设定单位(分辨率)划分的方法
1. 问题描述 需要将使用公式计算后的float数值换算到固定间隔数轴的对应位置上的数据,比如2.186这个数据,将该数据换算到以0.25为间隔的数轴上,换算后是2.0,还是2.25呢?该方法就是解决这个问题。 2. 方法 输入&…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
