竞赛 opencv python 深度学习垃圾图像分类系统
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 opencv python 深度学习垃圾分类系统
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:3分
- 创新点:4分
这是一个较为新颖的竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
课题简介
如今,垃圾分类已成为社会热点话题。其实在2019年4月26日,我国住房和城乡建设部等部门就发布了《关于在全国地级及以上城市全面开展生活垃圾分类工作的通知》,决定自2019年起在全国地级及以上城市全面启动生活垃圾分类工作。到2020年底,46个重点城市基本建成生活垃圾分类处理系统。
人工垃圾分类投放是垃圾处理的第一环节,但能够处理海量垃圾的环节是垃圾处理厂。然而,目前国内的垃圾处理厂基本都是采用人工流水线分拣的方式进行垃圾分拣,存在工作环境恶劣、劳动强度大、分拣效率低等缺点。在海量垃圾面前,人工分拣只能分拣出极有限的一部分可回收垃圾和有害垃圾,绝大多数垃圾只能进行填埋,带来了极大的资源浪费和环境污染危险。
随着深度学习技术在视觉领域的应用和发展,让我们看到了利用AI来自动进行垃圾分类的可能,通过摄像头拍摄垃圾图片,检测图片中垃圾的类别,从而可以让机器自动进行垃圾分拣,极大地提高垃圾分拣效率。
基于深度学习的垃圾分类系统,是非常好的毕业设计课题
一、识别效果
老样子, 废话不多说,先展示图像垃圾分类的识别效果
训练模型精度:
可以看到,只迭代了10轮精度达到87.50%,而且没有出现过拟合现象
我最高训练达到96%,迭代200轮
识别结果:
实际验证正确率还是很高的。
二、实现
1.数据集
该数据集包含了 2507 个生活垃圾图片。数据集的创建者将垃圾分为了 6 个类别,分别是:
如下所示:
一共6类垃圾, 比如玻璃类的如下:
塑料类的如下:
其他的不列举了。
2.实现原理和方法
使用深度残差网络resnet50作为基石,在后续添加需要的层以适应不同的分类任务
模型的训练需要用生成器将数据集循环写入内存,同时图像增强以泛化模型
使用不包含网络输出部分的resnet50权重文件进行迁移学习,只训练我们在5个stage后增加的层
需要的第三方库主要有tensorflow1.x,keras,opencv,Pillow,scikit-learn,numpy
安装方式很简单,打开terminal,例如:pip install numpy -i
https://pypi.tuna.tsinghua.edu.cn/simple
数据集与权重文件比较大,所以没有上传
如果环境配置方面有问题或者需要数据集与模型权重文件,可以在评论区说明您的问题,我将远程帮助您
3.网络结构
这里我只使用了resnet50的5个stage,后面的输出部分需要我们自己定制,网络的结构图如下:
stage5后我们的定制网络如下:
"""定制resnet后面的层"""def custom(input_size,num_classes,pretrain):# 引入初始化resnet50模型base_model = ResNet50(weights=pretrain,include_top=False,pooling=None,input_shape=(input_size,input_size, 3),classes=num_classes)#由于有预权重,前部分冻结,后面进行迁移学习for layer in base_model.layers:layer.trainable = False#添加后面的层x = base_model.outputx = layers.GlobalAveragePooling2D(name='avg_pool')(x)x = layers.Dropout(0.5,name='dropout1')(x)#regularizers正则化层,正则化器允许在优化过程中对层的参数或层的激活情况进行惩罚#对损失函数进行最小化的同时,也需要让对参数添加限制,这个限制也就是正则化惩罚项,使用l2范数x = layers.Dense(512,activation='relu',kernel_regularizer= regularizers.l2(0.0001),name='fc2')(x)x = layers.BatchNormalization(name='bn_fc_01')(x)x = layers.Dropout(0.5,name='dropout2')(x)#40个分类x = layers.Dense(num_classes,activation='softmax')(x)model = Model(inputs=base_model.input,outputs=x)#模型编译model.compile(optimizer="adam",loss = 'categorical_crossentropy',metrics=['accuracy'])return model
网络的训练是迁移学习过程,使用已有的初始resnet50权重(5个stage已经训练过,卷积层已经能够提取特征),我们只训练后面的全连接层部分,4个epoch后再对较后面的层进行训练微调一下,获得更高准确率,训练过程如下:
class Net():def __init__(self,img_size,gar_num,data_dir,batch_size,pretrain):self.img_size=img_sizeself.gar_num=gar_numself.data_dir=data_dirself.batch_size=batch_sizeself.pretrain=pretrain
def build_train(self):"""迁移学习"""model = resnet.custom(self.img_size, self.gar_num, self.pretrain)model.summary()train_sequence, validation_sequence = genit.gendata(self.data_dir, self.batch_size, self.gar_num, self.img_size)epochs=4model.fit_generator(train_sequence,steps_per_epoch=len(train_sequence),epochs=epochs,verbose=1,validation_data=validation_sequence,max_queue_size=10,shuffle=True)#微调,在实际工程中,激活函数也被算进层里,所以总共181层,微调是为了重新训练部分卷积层,同时训练最后的全连接层layers=149learning_rate=1e-4for layer in model.layers[:layers]:layer.trainable = Falsefor layer in model.layers[layers:]:layer.trainable = TrueAdam =adam(lr=learning_rate, decay=0.0005)model.compile(optimizer=Adam, loss='categorical_crossentropy', metrics=['accuracy'])model.fit_generator(train_sequence,steps_per_epoch=len(train_sequence),epochs=epochs * 2,verbose=1,callbacks=[callbacks.ModelCheckpoint('./models/garclass.h5',monitor='val_loss', save_best_only=True, mode='min'),callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1,patience=10, mode='min'),callbacks.EarlyStopping(monitor='val_loss', patience=10),],validation_data=validation_sequence,max_queue_size=10,shuffle=True)print('finish train,look for garclass.h5')
最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:

竞赛 opencv python 深度学习垃圾图像分类系统
0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 opencv python 深度学习垃圾分类系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分创新点:4分 这是一个较为新颖的竞…...
vsto worksheet中查找关键字【关键字】获取对应的整列 union成一个range
要在 VSTO 中的工作表中查找包含特定关键字的单元格,并将这些单元格所在列合并为一个范围,可以使用以下代码:csharp using Excel Microsoft.Office.Interop.Excel;// 在工作表中查找包含特定关键字的单元格,并返回这些单元格所在…...

flask_restful规范返回值之参数设置
设置重命名属性和默认值 使用 attribute 配置这种映射 , 比如: fields.String(attributeusername) 使用 default 指定默认值,比如: fields.String(defaultsxt) from flask import Flask,render_template from flask_restful import A…...

基于java+springboot+vue实现的超市管理系统(文末源码+Lw+ppt)23-354
摘 要 系统根据现有的管理模块进行开发和扩展,采用面向对象的开发的思想和结构化的开发方法对超市管理的现状进行系统调查。采用结构化的分析设计,该方法要求结合一定的图表,在模块化的基础上进行系统的开发工作。在设计中采用“自下而上”…...
AI大模型学习:开启智能时代的新篇章
随着人工智能技术的不断发展,AI大模型已经成为当今领先的技术之一,引领着智能时代的发展。这些大型神经网络模型,如OpenAI的GPT系列、Google的BERT等,在自然语言处理、图像识别、智能推荐等领域展现出了令人瞩目的能力。然而&…...
【字符串】字符串哈希
因为习惯了STL,所以一直没有接触这块儿的内容,今天cf碰到学着用了一下发现还蛮好用的 单哈希 字符串哈希 简单来说就是把一个字符串对应到一个数上,且一个字符串唯一对应一个数,一个数也唯一对应一个字符串 怎么进行这个操作呢…...
MacOS快速安装FFmpeg、ffprobe、ffplay
文章目录 一、工具简介二、mac 安装ffprobe、FFmpeg等相关工具2.1 方法一:使用Homebrew安装FFmpeg2.2 从官网下载FFmpeg安装包,源码安装2.3 macOS 无法验证开发者时安装 一、工具简介 这些工具都是与多媒体处理和流媒体相关的开源工具,它们都…...

数据结构 之 树习题 力扣oj(附加思路版)
层序遍历 算法流程: 1.创建一个队列记为que,将根节点放入队列。 2.每次从队列中弹出一个节点,记为node。 3.第三步看这个node有没有左孩子,如果有左孩子把左孩子放入到队列中,如果node有右孩子,把右孩子放入到队列中。…...
闭包学习,闭包和高阶函数
面试官反复在前端面试中提出闭包相关的问题,并要求提供代码示例,主要是为了考察以下几点: 1.概念:考察候选人是否真正理解闭包是如何形成的,即当一个函数可以访问并操作其外部作用域中的变量,即使在其外部…...
Linux实战笔记(五) shell
大家好,我是半虹,这篇文章我们介绍一下 shell 1、Shell Shell 通常泛指系统提供给用户的操作界面,是系统内核与用户之间的连接 Shell 这个名字其实还挺形象的,中文翻译是壳,什么的壳呢,自然是系统内核的壳…...
TCP Wrappers 的使用
以ssh为例,每当有ssh的连接请求时,先读取系统管理员所设置的访问控制文件,符合要求,则会把这次连接原封不 动的转给ssh进程,由ssh完成后续工作;如果这次连接发起的ip不符合访问控制文件中的设置,…...

数据结构——lesson11排序之快速排序
💞💞 前言 hello hello~ ,这里是大耳朵土土垚~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥个人主页&#x…...

Nacos部署(二)Linux部署Nacos2.3.x集群环境
😊 作者: 一恍过去 💖 主页: https://blog.csdn.net/zhuocailing3390 🎊 社区: Java技术栈交流 🎉 主题: Nacos部署(二)Linux部署Nacos2.3.x集群环境 ⏱️…...

RuoYi 自定义字典列表页面编码翻译
“字典数据”单独维护,而不是使用系统自带的字典表,应该如何使用这样的字典信息呢? 系统字典的使用,请参考: 《RuoYi列表页面字典翻译的实现》 https://blog.csdn.net/lxyoucan/article/details/136877238 需求说明…...

GAMES101 学习4
材质和外观 材质 BRDF 漫反射 任何方向的光进来都会被均匀的反射到周围各个不同的方向上去 假设能量守恒,那么 Li Lo,这之后BRDF就 ,就可以定义一个反照率 (Albeo) - ,在(0 - 1࿰…...

Redis中的缓存穿透
缓存穿透 缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,导致这些请求直接到了数据库上,对数据库造成了巨大的压力,可能造成数据库宕机。 常见的解决方案: 1)缓存无效 key 如果缓存和数据库中都查不到某…...

javaSwing超市收银(txt)
一、简介 超市收银系统是商店管理的重要组成部分,它可以帮助商家高效地进行商品管理、销售记录和结算。本文将介绍如何使用Java Swing开发一个简单的超市收银系统,包括基本功能如登录、修改商品信息、结算等,并利用txt文本作为数据库存储商品…...

Linux 理解文件系统、磁盘结构、软硬链接
目录 一、理解磁盘结构 1、磁盘的物理结构 2、硬件层面理解 3、磁盘的具体物理存储结构 4、进行逻辑抽象 5、磁盘文件的管理 6、创建新文件的过程 二、理解文件系统 1、文件的构成 2、为何选择4KB而非512字节作为基本单位? 3、文件系统的组成 数据块(Data Blocks&a…...
智慧商场数字化创新需要有数字能力帮手
商场和商圈是是促进流通创新、培育新兴消费的载体。很多实体店为适应消费升级需求新变化,加快运用现代信息技术,建设智慧商店,创新消费场景。蚓链运用现代信息技术(互联网、物联网、5G、大数据、人工智能、云计算等)&a…...

JS加密解密之应用如何保存到桌面书签
前言 事情起因是这样的,有个客户解密了一个js,然后又看不懂里边的一些逻辑,想知道它是如何自动拉起谷歌浏览器和如何保存应用到书签的,以及如何下载应用的。继而诞生了这篇文章,讲解一下他的基本原理。 渐进式Web应用…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...

Qt的学习(一)
1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...

【51单片机】4. 模块化编程与LCD1602Debug
1. 什么是模块化编程 传统编程会将所有函数放在main.c中,如果使用的模块多,一个文件内会有很多代码,不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里,在.h文件里提供外部可调用函数声明,其他.c文…...