sklearn主成分分析PCA
文章目录
- 基本原理
- PCA类
- 图像降维与恢复
基本原理
PCA,即主成分分析(Principal components analysis),顾名思义就是把矩阵分解成简单的组分进行研究,而拆解矩阵的主要工具是线性变换,具体形式则是奇异值分解。
设有 m m m个 n n n维样本 X = ( x 1 , x 2 , ⋯ , x m ) X=(x_1, x_2,\cdots,x_m) X=(x1,x2,⋯,xm),但这 n n n个维度彼此并不完全独立,所以想试试有没有办法将其降低到 k k k维,则PCA的主要流程为
- 先将原始数据按列组成 n n n行 m m m列矩阵 X X X,然后对每一行数据进行中心化 x i j = x i j − 1 m ∑ j = 1 m x j x_{ij}=x_{ij}-\frac{1}{m}\sum^m_{j=1}x_j xij=xij−m1∑j=1mxj,记中心化之后的矩阵为 x ′ x' x′
- 计算样本协方差矩阵,由于已经中心化,故可表示为 C = 1 m X ′ X ′ T C=\frac{1}{m}X'X'^T C=m1X′X′T
- 计算协方差矩阵的特征值和特征向量,一般需要用到奇异值分解
- 对特征向量按照特征值大小进行排序,取前 k k k组特征向量组成矩阵 P P P,则 P X PX PX就是 k k k维的主成分
由于矩阵乘法的几何意义是坐标系的旋转、平移以及缩放,所以从几何角度理解PCA,就是将坐标系旋转到尽量与更多样本平行,从而达到简化坐标轴的作用。就好比一条空间中的直线,需要用三个维度来表示,但这条直线是一维的,只需旋转、移动坐标轴,使得这条直线与 x x x轴重合,就能只用一个坐标来表示这条直线。
PCA类
【PCA】类是sklearn.decomposition
中用以实现主成分分析的类,其构造函数为
PCA(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', n_oversamples=10, power_iteration_normalizer='auto', random_state=None)
各参数含义如下
n_components
组分个数,默认为样本数和特征数中较小的那个;如果输入为小数,则表示百分之几copy
为False
时,将覆盖原始数据。whitenbool
为True
时, 对组分矢量进行如下操作:先乘以样本的方根,然后除以奇异值svd_solver
奇异值求解器,可选'auto', 'full', 'arpack', 'randomized'
tol
容忍度random_state
用于设置随机数种子power_iteration_normalizer
设置SVD分解方案,可选"LU", "QR", "auto", "none
四种。当svd_solver
设为arpack
时不可用。
奇异值求解器共有4个选择, 其中full
将调用scipy.linalg.svd
,计算稠密矩阵比较快;arpack
将调用scipy.sparse.linalg.svds
,更擅长计算稀疏矩阵。二者的具体区别可见scipy奇异值分解💎稀疏矩阵SVD
图像降维与恢复
下面用scipy中经典的楼梯图像来测试一下主成分分析。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import decompositionfrom scipy.misc import ascent
img = ascent()sh = img.shape
ns = [256, 128, 64, 32, 16, 5]imgs = [img]
for i in ns[1:]:pca = decomposition.PCA(i)# 彩色图像需要先转化为矩阵再进行PCAimNew = pca.fit_transform(img.reshape(sh[0], -1))im = pca.inverse_transform(imNew)imgs.append(im.reshape(sh))fig = plt.figure()
for i, im in enumerate(imgs):ax = fig.add_subplot(231+i)ax.imshow(im)plt.title(str(ns[i]))plt.axis('off')plt.show()
【fit_transform】对图像进行降维,保留相应组分并输出
【inverse_transofrm】对图像进行恢复,最终得到的效果如下,随着组分的逐渐降低,图像也越来越模糊。
相关文章:

sklearn主成分分析PCA
文章目录 基本原理PCA类图像降维与恢复 基本原理 PCA,即主成分分析(Principal components analysis),顾名思义就是把矩阵分解成简单的组分进行研究,而拆解矩阵的主要工具是线性变换,具体形式则是奇异值分解。 设有 m m m个 n n …...

linux命令之tput
1.tput介绍 linux命令tput是可以在终端中进行文本和颜色的控制和格式化,其是一个非常有用的命令 2.tput用法 命令: man tput 3.样例 3.1.清除屏幕 命令: tput clear [rootelasticsearch ~]# tput clear [rootelasticsearch ~]# 3.2.…...

python基础——文件操作【文件编码、文件的打开与关闭操作、文件读写操作】
📝前言: 这篇文章主要讲解一下python中对于文件的基础操作: 1,文件编码 2,文件的打开与关闭操作 3,文件读写操作 🎬个人简介:努力学习ing 📋个人专栏:C语言入…...
rustup update 升级rust时异常 directory does not exist: ‘share/doc/rust/html‘ 解决方法
最近把原来的老版本rust升级为最新版本, 转悠了半天给我报一个 目录不存在异常而升级失败。 异常信息: info: rolling back changes error: failure removing component rust-docs-x86_64-apple-darwin, directory does not exist: share/doc/rust/ht…...

算法学习——LeetCode力扣动态规划篇5
算法学习——LeetCode力扣动态规划篇5 198. 打家劫舍 198. 打家劫舍 - 力扣(LeetCode) 描述 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统…...

C语言-文件
目录 1.什么是文件?1.1 程序文件1.2 数据文件 2.二进制文件和文本文件?3.文件的打开和关闭4.文件的顺序读写5.文件的随机读写5.1 fseek5.2 ftell5.3 rewind 6.文件读取结束的判定7.文件缓冲区 1.什么是文件? 磁盘上的文件就是文件 一般包含两…...

牛客NC30 缺失的第一个正整数【simple map Java,Go,PHP】
题目 题目链接: https://www.nowcoder.com/practice/50ec6a5b0e4e45348544348278cdcee5 核心 Map参考答案Java import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可…...

Unity 基于Rigidbody2D模块的角色移动
制作好站立和移动的动画后 控制器设计 站立 移动 角色移动代码如下: using System.Collections; using System.Collections.Generic; using Unity.VisualScripting; using UnityEngine;public class p1_c : MonoBehaviour {// 获取动画组件private Animator …...

Stata 15 for Mac:数据统计分析新标杆,让研究更高效!
Stata 是一种统计分析软件,适用于数据管理、数据分析和绘图。Stata 15 for Mac 具有以下功能: 数据管理:Stata 提供强大的数据管理功能,用户可以轻松导入、清洗、整理和管理数据集。 统计分析:Stata 提供了广泛的统计…...
vue配置代理proxy
如何配置代理 在 vue devServer服务器配置文件 vue.config.js 的 devServer 选项中配置 proxy module.exports {// publicPath:process.env.NODE_ENV production ? /vue_workspac/aihuhuproject/ : /,//基本路径publicPath: ./,//默认的/是绝对路径,如果不确定在…...
.NET DES加密算法实现
简介: DES(Data Encryption Standard)加密算法作为一种历史悠久的对称加密算法,自1972年由美国国家标准局(NBS)发布以来,广泛应用于各种数据安全场景。本文将从算法原理、优缺点及替代方案等方…...

构建操作可靠的数据流系统
文章目录 前言数据流动遇到的困难先从简单开始可靠性延迟丢失 性能性能损失性能——分层重试 可扩展性总结 前言 在流式架构中,任何对非功能性需求的漏洞都可能导致严重后果。如果数据工程师没有将可伸缩性、可靠性和可操作性等非功能性需求作为首要考虑因素来构建…...

awesome-cheatsheets:超级速查表 - 编程语言、框架和开发工具的速查表
awesome-cheatsheets:超级速查表 - 编程语言、框架和开发工具的速查表,单个文件包含一切你需要知道的东西 官网:GitHub - skywind3000/awesome-cheatsheets: 超级速查表 - 编程语言、框架和开发工具的速查表,单个文件包含一切你需…...
GFW不起作用
闲着折腾,刷openwrt到一个小米3G路由器后,GFW不起作用。后面发现是自己电脑设置了DNS,解析完IP后,在经过代代,IP不在GFW的清单里,所以转发控制就没有起作用。 结论 在经过代代前的所有节点,都…...

AndroidStudio出现类似 Could not create task ‘:app:ToolOperatorDemo.main()‘. 错误
先看我们的报错 翻译过来大概意思是:无法创建任务:app:ToolOperatorDemo.main()。 没有找到名称为“main”的源集。 解决方法: 在.idea文件夹下的gradle.xml文件中 <GradleProjectSettings>标签下添加<option name"delegatedBuild" value"f…...
一些常见的ClickHouse问题和答案
什么是ClickHouse?它与其他数据库系统有什么区别? ClickHouse是一个开源的列式数据库管理系统(DBMS),专门用于高性能、大规模数据分析。与传统的行式数据库相比,ClickHouse具有更高的查询性能、更高的数据…...

第九届蓝桥杯大赛个人赛省赛(软件类)真题C 语言 A 组-分数
solution1 直观上的分数处理 #include <iostream> using namespace std; int main() {printf("1048575/524288");return 0; }#include<stdio.h> #include<math.h> typedef long long ll; struct fraction{ll up, down; }; ll gcd(ll a, ll b){if…...

并发编程——4.线程池
这篇文章我们来讲一下线程池的相关内容 目录 1.什么是线程池 1.1为什么要用线程池 1.2线程池的优势 2.线程池的使用 3.线程池的关闭 4.线程池中的execute和submit方法的一些区别 5.线程池的参数和原理 6.自定义线程池 7.总结 1.什么是线程池 1.1为什么要用线程池 首…...

阿里云魔搭发起“ModelScope-Sora开源计划”,将为中国类Sora模型开发提供一站式工具链
在2024年3月23日的全球开发者先锋大会上,阿里云的魔搭社区宣布了一个新计划:“ModelScope-Sora开源计划”。这个计划旨在通过开源方式,帮助中国在Sora模型类型上做出更多创新。这个计划提供了一整套工具,包括处理数据的工具、多模…...

大模型与数据分析:探索Text-to-SQL
当今大模型如此火热,作为一名数据同学,持续在关注LLM是如何应用在数据分析中的,也关注到很多公司推出了AI数智助手的产品,比如火山引擎数智平台VeDI—AI助手、 Kyligence Copilot AI数智助理、ThoughtSpot等,通过接入人…...

USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...

手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...

快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...

数据分析六部曲?
引言 上一章我们说到了数据分析六部曲,何谓六部曲呢? 其实啊,数据分析没那么难,只要掌握了下面这六个步骤,也就是数据分析六部曲,就算你是个啥都不懂的小白,也能慢慢上手做数据分析啦。 第一…...

LangChain + LangSmith + DeepSeek 入门实战:构建代码生成助手
本文基于 Jupyter Notebook 实践代码,结合 LangChain、LangSmith 和 DeepSeek 大模型,手把手演示如何构建一个代码生成助手,并实现全流程追踪与优化。 一、环境准备与配置 1. 安装依赖 pip install langchain langchain_openai2. 设置环境变…...
Kafka深度解析与原理剖析
文章目录 一、Kafka核心架构原理1. **分布式协调与选举**2. **ISR、OSR与HW机制**3. **高性能存储设计**4. **刷盘机制 (Flush)**5. **消息压缩算法**二、高可用与消息可靠性保障1. **数据高可用策略**2. **消息丢失场景与规避**3. **顺序消费保证**三、Kafka高频面试题精析1. …...
Kafka 消息模式实战:从简单队列到流处理(一)
一、Kafka 简介 ** Kafka 是一种分布式的、基于发布 / 订阅的消息系统,由 LinkedIn 公司开发,并于 2011 年开源,后来成为 Apache 基金会的顶级项目。它最初的设计目标是处理 LinkedIn 公司的海量数据,如用户活动跟踪、消息传递和…...

高性能MYSQL:复制同步的问题和解决方案
一、复制的问题和解决方案 中断MySQL的复制并不是件难事。因为实现简单,配置相当容易,但也意味着有很多方式会导致复制停止,陷入混乱并中断。 (一)数据损坏或丢失的错误 由于各种各样的原因,MySQL 的复制…...