3D检测:从pointnet,voxelnet,pointpillar到centerpoint
记录centerpoint学习笔记。目前被引用1275次,非常高。
地址:Center-Based 3D Object Detection and Tracking (thecvf.com)
GitHub - tianweiy/CenterPoint
CenterPoint:三维点云目标检测算法梳理及最新进展(CVPR2021)_哔哩哔哩_bilibili 作者解释。
CenterPoint 是一种用于激光点云的3D目标检测与跟踪算法框架,由2021年CVPR论文《Center-based 3D Object Detection and Tracking》提出。与以往算法不同,CenterPoint使用关键点而不是边界框来表示、检测和跟踪3D目标。
具体来说,CenterPoint算法分为两个阶段:
-
第一阶段:使用关键点检测器检测目标的中心点,然后基于中心点特征回归出目标的3D尺寸、朝向和速度等属性。
-
第二阶段:基于目标额外的点特征,对第一阶段得到的属性进行优化。
CenterPoint算法的优点包括简单高效,在nuScenes和Waymo数据集上都取得了state-of-the-art的性能表现。此外,目标跟踪被简化为一个简单的最近点匹配过程。
2D目标检测:
2D目标检测需要输出每个对象的类别(如人、车、猫等)以及一个包围框(bounding box),该包围框在图像中精确地定位了对象的位置。常见算法有基于区域提议(region proposal)的两阶段检测算法(如Faster R-CNN)和基于单阶段检测(one-stage detection)的算法(如YOLO、RetinaNet)
anchor
anchor(锚点)通常是指在目标检测任务中使用的一系列预定义的边界框(bounding boxes)。这些锚点具有不同的尺寸和宽高比,以覆盖图像中可能出现的各种形状和大小的目标。
锚点机制的工作流程如下:
- 在训练阶段,网络首先生成一系列锚点,这些锚点覆盖了图像中可能出现的各种形状和大小的目标。
- 然后,网络预测每个锚点内部是否包含一个目标,如果是,则进一步预测目标的类别和锚点需要调整的偏移量,以更好地匹配目标的真实边界框。
- 在推理阶段,网络使用这些锚点作为初始猜测,快速检测图像中的目标
缺点:不是end2end,需要nms后处理。
NMS
NMS(Non-Maximum Suppression,非极大值抑制)是一种在目标检测任务中常用的后处理步骤,用于去除冗余的检测边界框,确保每个目标只被检测一次。
NMS的主要步骤如下:
-
排序:首先,根据检测边界框的置信度(通常由检测算法给出)对所有边界框进行降序排序。
-
选择最高置信度的边界框:选择置信度最高的边界框作为当前考虑的边界框。
-
抑制与当前边界框高度重叠的边界框:计算当前边界框与其他所有边界框的交并比(IoU,Intersection over Union),如果IoU超过某个预定义的阈值(例如0.5),则将这些边界框抑制(即移除或忽略)。
-
重复步骤2和3:从剩余的边界框中选择置信度最高的边界框,重复步骤3,直到所有的边界框都被处理过。
-
输出最终检测结果:最后,剩下的边界框就是NMS处理后的检测结果,每个目标只被检测一次。
NMS在目标检测算法中起着关键作用,可以显著减少冗余的检测结果,提高检测的准确性和效率。然而,NMS也有一些局限性,例如可能会抑制一些具有高置信度但与当前边界框重叠的边界框,这可能导致一些真正的目标被遗漏。为了解决这个问题,研究者们提出了改进的NMS算法,如Soft-NMS、Softer-NMS等,它们通过更柔和的抑制策略来减少误抑制。
3D目标检测:
3D目标检测是计算机视觉领域的一项重要任务,其目标是在三维空间中检测和定位图像中的各种对象。与2D目标检测相比,3D目标检测不仅需要输出每个对象的类别和位置,还需要输出其在三维空间中的尺寸、方向和姿态等信息。
为了实现3D目标检测,研究者们提出了多种算法,包括基于深度学习的端到端检测算法和基于几何学的算法。近年来,基于深度学习的3D目标检测算法取得了显著的进展,特别是基于点云(如PointNet、PointNet++)和基于体素(如VoxelNet)的方法。
2D的预测:xy,wh(宽高),cls类别
3D的预测:xyz,lwh(长宽高),θ朝向角度,cls类别
pointnet
PointNet是一种用于点云处理的深度学习模型,由2017年CVPR论文《PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation》提出。该模型的主要思想是将点云数据作为输入,通过神经网络对其进行处理,以实现对点云数据的深度学习分析。
PointNet的关键创新点包括:
-
对称函数(Set Abstraction):为了处理点云的无序性,PointNet引入了对称函数,也称为集合函数。该操作将无序的点集表示为固定长度的向量。在PointNet中,集合函数的实现形式是基于最大池化(max)。
-
T-Net:为了获得点云的几何变换不变性,PointNet通过学习几何变换的参数,对点云数据进行对齐和变换。T-Net通过生成变换矩阵对原始点云数据进行变换,以更好地进行特征学习和提取。
-
多层感知器(MLP):PointNet使用多层感知器(MLP)对点云进行特征提取和分类/分割。
PointNet的主要应用包括:
- 3D物体分类:给定N个3D的点云,通过PointNet进行分类。
- 3D物体分割:对点云进行语义分割或实例分割。
PointNet的优势在于其简单高效的设计,能够直接处理点云数据,而无需将其转换为其他表示形式(如体素或网格)。这使得PointNet在基于点云的3D物体检测和分割任务中取得了当时最先进的性能。
voxelnet
VoxelNet是一种用于基于点云的3D物体检测的端到端学习框架,由2018年CVPR论文《VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection》提出。该框架的主要思想是将稀疏的点云数据转换成密集的体素表示,然后使用3D卷积网络进行特征提取和物体检测。
VoxelNet框架主要包括以下步骤:
-
点云预处理:将稀疏的点云数据转换成规则的体素网格表示。这一步通过将点云划分成规则的体素,并对每个体素内的点进行统计(如最大值、最小值、平均值等)来实现。
-
体素特征提取:使用3D卷积网络从体素网格中提取特征。这些特征能够描述体素内的点云分布和结构信息。
-
区域提议网络(RPN):基于提取的体素特征,使用RPN生成候选物体的3D边界框提议。RPN是一个全卷积网络,能够输出一系列3D边界框提议以及每个提议的置信度。
-
边界框回归和分类:对RPN生成的边界框提议进行回归和分类,以获得最终的物体检测结果。这一步通常使用3D卷积网络实现。
pointpillar
PointPillar是一种用于基于激光雷达(LiDAR)点云的3D物体检测的算法,由2019年CVPR论文《PointPillars: Fast Encoders for Object Detection from Point Clouds》提出。该算法的主要思想是将稀疏的点云数据转换成伪图像表示(每一个pixel不仅有原始的2D信息还包括了高度信息),然后使用2D卷积网络进行特征提取和物体检测。voxelnet很慢也很占内存。
PointPillar框架主要包括以下步骤:
-
点云预处理:将稀疏的点云数据转换成规则的伪图像表示。这一步通过将点云划分成规则的柱体(pillars),并对每个柱体内的点进行统计(如最大值、最小值、平均值等)来实现。
-
伪图像特征提取:使用2D卷积网络从伪图像中提取特征。这些特征能够描述每个柱体内的点云分布和结构信息。
-
区域提议网络(RPN):基于提取的伪图像特征,使用RPN生成候选物体的3D边界框提议。RPN是一个全卷积网络,能够输出一系列3D边界框提议以及每个提议的置信度。
-
边界框回归和分类:对RPN生成的边界框提议进行回归和分类,以获得最终的物体检测结果。这一步通常使用3D卷积网络实现。
PointPillar的创新之处在于其高效的计算方式,能够将稀疏的点云数据转换为密集的伪图像表示,从而利用成熟的2D卷积网络进行特征提取。这使得PointPillar在基于激光雷达的3D物体检测任务中取得了当时最先进的性能。
centerpoint
当anchor感应到附件有目标物体的时候,就会有一个很大的激活值,就是上面红色部分。
当物体是旋转的时候,anchor会误匹配,主要是因为anchor是正的,不能斜着
中心点的表征是热力图(关键点检测的loss):CLS*H*W,热力图的局部最大值认为是有目标obj
相关文章:

3D检测:从pointnet,voxelnet,pointpillar到centerpoint
记录centerpoint学习笔记。目前被引用1275次,非常高。 地址:Center-Based 3D Object Detection and Tracking (thecvf.com) GitHub - tianweiy/CenterPoint CenterPoint:三维点云目标检测算法梳理及最新进展(CVPR2021ÿ…...
使用canvas内置api完成图片的缩放平移和导出和添加提示
最近挺忙的,几乎没有时间去更新博客,今天正好在学习新东西,正好和大家分享一下。 最近要做一个使用canvas完成图片平移,缩放,添加标注的需求,完成的效果大概如下: 使用canvas内置api完成图片的缩…...

数据结构——二叉树——堆
前言: 在前面我们已经学习了数据结构的基础操作:顺序表和链表及其相关内容,今天我们来学一点有些难度的知识——数据结构中的二叉树,今天我们先来学习二叉树中堆的知识,这部分内容还是非常有意思的,下面我们…...

算法学习——LeetCode力扣图论篇3(127. 单词接龙、463. 岛屿的周长、684. 冗余连接、685. 冗余连接 II)
算法学习——LeetCode力扣图论篇3 127. 单词接龙 127. 单词接龙 - 力扣(LeetCode) 描述 字典 wordList 中从单词 beginWord 和 endWord 的 转换序列 是一个按下述规格形成的序列 beginWord -> s1 -> s2 -> … -> sk: 每一对相…...
状态模式详解:管理对象状态的利器
在软件设计中,我们经常会遇到需要根据对象的不同状态来执行不同行为的情况。为了优雅地管理这些状态及其对应的行为,状态模式(State Pattern)应运而生。本文将深入探讨状态模式的使用条件、Java代码实现,并结合现实社会…...

探索----------------阿里云
目录 一、阿里云四大件 1、云服务器ECS 2、云数据库RDS 3、负载均衡SLB 4、对象存储OSS 5、其他的云计算产品 1)内容分发网络CDN 2)专有网络 VPC 二、linux发行版本 三、你平时对系统会怎么优化(五大负载) 1、cpu 使用率…...

Tidb和MySQL性能简单测试对比
一、单SQL性能对比 由于TiDB的并发能力优秀,但是单个SQL执行延迟较差,为了客观对比,所以只用1个线程来压测tidb和mysql,以观察延迟情况 二、并发SQL性能对比 TiDB:v6.5.2 MySQL:8.0.26 (单机) 三、结论 …...
2024.2.6力扣每日一题——魔塔游戏
2024.2.6 题目来源我的题解方法一 贪心优先队列 题目来源 力扣每日一题;题序:LCP 30 我的题解 方法一 贪心优先队列 思路:使用贪心的思想,从左到右遍历,若遇到加上当前房间的生命值后小于等于0,由于需要…...
C# OAuth单点登录的实现
原理 单点登录(Single Sign-On,简称SSO)是一种身份验证技术,它允许用户使用一组凭据(如用户名和密码)登录多个相关但独立的系统,而无需在每个系统中都进行登录操作。下面是一个简单的SSO实现示…...

AtCoder Beginner Contest 347 (ABCDEF题)视频讲解
A - Divisible Problem Statement You are given positive integers N N N and K K K, and a sequence of length N N N, A ( A 1 , A 2 , … , A N ) A(A_1,A_2,\ldots,A_N) A(A1,A2,…,AN). Extract all elements of A A A that are multiples of K K K, divi…...

【vue2+antvx6】报错Cannot read properties of undefined (reading ‘toUpperCase‘)
我的代码是这样的 <el-collapseref"collapse"v-model"active"accordionclass"collapseStart"change"collapsechange"><el-collapse-item:name"String(index 1)"v-for"(i, index) in List":key"in…...
主流的开发语言、环境及其特点
主流的开发语言及其特点: 1. Python:以其简洁的语法和强大的库支持而闻名,适用于数据科学、人工智能和网络开发等领域。 2. Java:跨平台的编程语言,广泛应用于企业级应用、Android 开发和大型系统开发。 3. C…...
Android知识 - 代码混淆ProGuard规则介绍
ProGuard 的规则及示例 规则概述 ProGuard 是一个代码优化工具,它通过移除未使用的代码、重命名类、字段和方法等方式来减小应用的大小。在 ProGuard 的配置文件中,我们可以定义一系列的规则来控制优化和混淆的过程。 规则语法 ProGuard 的规则通常包…...
【Linux的进程篇章 - 冯诺依曼的体系结构】
Linux学习笔记---005 Linux冯诺依曼体系结构理解1、冯诺依曼体系结构1.1、冯诺依曼体系结构1.2、硬件层面1.3、数据层面1.4、那么冯诺依曼体系能干什么呢? 2、操作系统(Operastor System)2.1、概念2.2、操作系统层的核心功能 3、进程的初步理解 Linux冯诺依曼体系结…...
flask-(数据连接池的使用,定制命令,信号的使用,表关系的建立和查询)
文章目录 连接池实例flask定制命令flask 缓存的使用flask信号的使用sqlalchemy原生操作sqlalchemy操作表flask orm操作表一对多的增加和跨表查询 (一对一只需要关联字段加上 ,uniqueTrue)多对多关系的增加和查询多对多基本的增删改查 连接池 import pymy…...

设计模式学习笔记 - 设计模式与范式 -行为型:2.观察者模式(下):实现一个异步非阻塞的EventBus框架
概述 《1.观察者模式(上)》我们学习了观察者模式的原理、实现、应用场景,重点节介绍了不同应用场景下,几种不同的实现方式,包括:同步阻塞、异步非阻塞、进程内、进程间的实现方式。 同步阻塞最经典的实现…...

数据挖掘|贝叶斯分类器及其Python实现
分类分析|贝叶斯分类器及其Python实现 0. 分类分析概述1. Logistics回归模型2. 贝叶斯分类器2.1 贝叶斯定理2.2 朴素贝叶斯分类器2.2.1 高斯朴素贝叶斯分类器2.2.2 多项式朴素贝叶斯分类器 2.3 朴素贝叶斯分类的主要优点2.4 朴素贝叶斯分类的主要缺点 3. 贝叶斯分类器在生产中的…...

Linux文件(系统)IO(含动静态库的链接操作)
文章目录 Linux文件(系统)IO(含动静态库的链接操作)1、C语言文件IO操作2、三个数据流stdin、stdout、stderr3、系统文件IO3.1、相关系统调用接口的使用3.2、文件描述符fd3.3、文件描述符的分配规则3.3、重定向3.4、自制shell加入重…...

CI/CD实战-jenkins结合ansible 7
配置主机环境 在jenkins上断开并删除docker1节点 重新给master添加构建任务 将server3,server4作为测试主机,停掉其上后面的docker 在server2(jenkins)主机上安装ansible 设置jenkins用户到目标主机的免密 给测试主机创建用户并…...

内网渗透-(黄金票据和白银票据)详解(一)
目录 一、Kerberos协议 二、下面我们来具体分析Kerberos认证流程的每个步骤: 1、KRB_AS-REQ请求包分析 PA-ENC-TIMESTAMP PA_PAC_REQUEST 2、 KRB_AS_REP回复包分析: TGT认购权证 Logon Session Key ticket 3、然后继续来讲相关的TGS的认证过程…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...

莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...

Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...