《责任链模式(极简c++)》
本文章属于专栏- 概述 - 《设计模式(极简c++版)》-CSDN博客
模式说明
- 方案: 责任链模式将请求的发送者和接收者解耦,构成一个链条,并由多个对象对请求进行处理,直到找到合适的处理者为止。
- 优点: 实现了请求发送者和接收者的解耦,灵活性高,易于扩展,每个处理者只需关注自己的处理逻辑。
- 缺点: 会影响性能,且不易维护
本质思想:责任链模式的本质思想是将多个处理者组成一条链,依次尝试处理请求,直到找到能够处理该请求的对象为止。
实践建议:不建议使用。该模式会降低性能,且分离的处理逻辑分支,会降低代码可读性。当遇到逻辑复杂,判断分支繁琐的逻辑,我们要做的是解耦,而不是把代码简单地拆开。
示例代码
#include <iostream>// 请求类
class Request {
public:int value;Request(int v) : value(v) {}
};// 处理者接口
class Handler {
protected:Handler* successor;public:Handler() : successor(nullptr) {}void setSuccessor(Handler* handler) {successor = handler;}virtual void handleRequest(const Request& req) const = 0;
};// 具体处理者A
class ConcreteHandlerA : public Handler {
public:void handleRequest(const Request& req) const override {if (req.value < 10) {std::cout << "ConcreteHandlerA handles the request." << std::endl;} else if (successor != nullptr) {successor->handleRequest(req);}}
};// 具体处理者B
class ConcreteHandlerB : public Handler {
public:void handleRequest(const Request& req) const override {if (req.value >= 10 && req.value < 20) {std::cout << "ConcreteHandlerB handles the request." << std::endl;} else if (successor != nullptr) {successor->handleRequest(req);}}
};// 客户端代码
int main() {// 构建责任链Handler* handlerA = new ConcreteHandlerA();Handler* handlerB = new ConcreteHandlerB();handlerA->setSuccessor(handlerB);// 发送请求Request req1(5);Request req2(15);handlerA->handleRequest(req1); // 输出:ConcreteHandlerA handles the request.handlerA->handleRequest(req2); // 输出:ConcreteHandlerB handles the request.// 释放内存delete handlerA;delete handlerB;return 0;
}
相关文章:
《责任链模式(极简c++)》
本文章属于专栏- 概述 - 《设计模式(极简c版)》-CSDN博客 模式说明 方案: 责任链模式将请求的发送者和接收者解耦,构成一个链条,并由多个对象对请求进行处理,直到找到合适的处理者为止。优点: …...
【学习】JMeter和Postman两种测试工具的主要区别有哪些
Postman和JMeter都是常用的API测试工具,但它们之间存在一些不同之处。以下是Postman和JMeter的主要区别: 语言支持 Postman是一个基于Chrome的应用程序,因此它使用JavaScript作为编程语言。这意味着你可以使用JavaScript来编写测试脚本和断…...
【压缩字符串算法解析与实现】
压缩的要求是将连续相同字符替换为字符 数字形式,例如 “AAABCCDDDD” 变为 “A3BC2D4”。 问题描述与分析 给定一个字符串,我们需要判断是否可以进行压缩,并且只在压缩后的字符串长度比原字符串长度更短时进行压缩。如果字符串可以压缩&a…...
test02
欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和…...
K8S Pod 水平自动扩缩容 HPA
介绍 HPA(Horizontal Pod Autoscaler)水平扩缩意味着可根据观察到的CPU、内存使用率或自定义度量标准来自动扩展或缩容Pod的数量(Deployment、StatefulSet 或其他类似资源)。与“垂直”扩缩不同,对于 K8S,…...
Spring日志框架
前言 本文我们简单说说关于Spring中的日志框架,以及对应的注解 我们知道,公司服务器在运行的时候,一定会打印日志,有很多优点,比如预防报警,或者是某重大事故尝试修复等等都需要查看日志 应该说日志对我们来说并不陌生,我们在之前刷题或者是程序遇到bug的时候也经常会将程序的状…...
(九)关系数据理论
函数依赖:设R(U)是属性集U上的关系模式。X、Y是属性集U的子集。若对于R(U)的任意一个可能的关系r,r中不可能存在两个元组在X上的属性值相等,而在Y上的属性值不等,则称X函数确定Y或Y函数依赖于X,记作X→Y。(即只要X 上的…...
【经验分享】Ubuntu下如何解决问题arm-linux-gcc:未找到命令
【经验分享】Ubuntu下如何解决问题arm-linux-gcc:未找到命令 前言问题分析解决方法 前言 在编译过程中发现一个问题,明明之前安装了gcc-4.6版本,版本信息都是正常显示的,刚安装上去的时候也是可以用的。但不知道什么原因突然不能…...
【算法刷题day10】Leetcode:232.用栈实现队列、225. 用队列实现栈
文章目录 Leetcode 232.用栈实现队列解题思路代码总结 Leetcode 225. 用队列实现栈解题思路代码总结 stack、queue和deque对比 草稿图网站 java的Deque Leetcode 232.用栈实现队列 题目:232.用栈实现队列 解析:代码随想录解析 解题思路 一个栈负责进&a…...
sql注入详解
ps:简单说下这里只写了我能理解的明白的,后面的二阶注入,堆叠注入没写 手工sql注入 1.存在sql注入本质上就是数据库过滤的不严格或者未进行过滤,1 and 11,返回正常,1 and 12 返回不正常,说明带到数据库里面…...
[蓝桥杯 2022 省 B] 李白打酒加强版
题目链接 [蓝桥杯 2022 省 B] 李白打酒加强版 题目描述 话说大诗人李白,一生好饮。幸好他从不开车。 一天,他提着酒壶,从家里出来,酒壶中有酒 2 2 2 斗。他边走边唱: 无事街上走,提壶去打酒。 逢店加一倍…...
【检索增强】Retrieval-Augmented Generation for Large Language Models:A Survey
本文简介 1、对最先进水平RAG进行了全面和系统的回顾,通过包括朴素RAG、高级RAG和模块化RAG在内的范式描述了它的演变。这篇综述的背景下,更广泛的范围内的法学硕士研究RAG的景观。 2、确定并讨论了RAG过程中不可或缺的核心技术,特别关注“…...
EVM Layer2 主流解决方案
深度解析主流 EVM Layer 2 解决方案:zk Rollups 和 Optimistic Rollups 随着以太坊网络的不断演进和 DeFi 生态系统的迅速增长,以太坊 Layer 2 解决方案日益受到关注。 其中,zk Rollups 和 Optimistic Rollups 作为两种备受瞩目的主流 EVM&…...
go中结构体标签:omitempty、json꞉“name“、 gorm꞉“column꞉name“、yaml꞉“name“
在Go语言中,结构体标签(Struct Tags)提供了一种在编译时附加到结构体字段上的元数据,这些标签可以被运行时的反射(reflection)机制读取。结构体标签的存在意义和用途非常广泛,主要包括ÿ…...
七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b,对GPT4胜率超过80%
前言 在此之前,我司论文审稿项目组已经通过我司处理的paper-review数据集,分别微调了RWKV、llama2、gpt3.5 16K、llama2 13b、Mistral 7b instruct、gemma 7b 七月论文审稿GPT第1版:通过3万多篇paper和10多万的review数据微调RWKV七月论文审…...
【QT学习】1.qt初识,创建qt工程,使用按钮,第一个交互按钮
1.初识qt--》qt是个框架,不是语言 1.学习路径 一 QT简介 ,QTCreator ,QT工程 ,QT的第一个程序,类,组件 二 信号与槽 三 对话框 四 QT Desiner 控件 布局 样式 五 事件 六 GUI绘图 七 文件 八 …...
JavaScript_与html结合方式
JavaScript_语法 ECMAScript:客户端脚本语言的标准 1.基本语法 1.1 与html结合方式(2种) 1. 内部JS 定义<script>,标签体内容就是js代码 2. 外部JS 定义<script>,通过src属性引入外部的 js文件 注意: 1.<script>…...
WPF —— 动画
wpf动画类型 1<类型>Animation这些动画称为from/to/by动画或者叫基本动画,他们会在起始值或者结束值进行动画处理,常用的例如 <DoubleAnimation> 2 <类型>AnimationUsingKeyFrames: 关键帧动画,功能要比from/to这些动画功…...
前端二维码生成工具小程序:构建营销神器的技术解析
摘要: 随着数字化营销的不断深入,二维码作为一种快速、便捷的信息传递方式,已经广泛应用于各个领域。本文旨在探讨如何通过前端技术构建一个功能丰富、操作简便的二维码生成工具小程序,为企业和个人提供高效的营销支持。 一、引言…...
光伏发电量预测(Python代码,CNN结合LSTM,TensorFlow框架)
1.数据集(开始位置),数据集免费下载链接:https://download.csdn.net/download/qq_40840797/89051099 数据集一共8列,第一列是时间,特征列一共有6列:"WindSpeed" - 风速 "Sunshi…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
