Training language models to follow instructions with human feedback
Abstract
使语言模型变得更大并不意味着它们本身就能更好地遵循用户的意图。模型的输出结果可能存在以下问题
- 不真实
- 有毒
- 对用户没有帮助
即这些模型没有和用户 “对齐”(aligned)
在给定的 Prompt 分布上,1.3B 的 InstructGPT 的输出比 175B GPT-3 的输出更好(尽管参数量相差 100 多倍)。
1 Introduction
语言建模的目标:predicting the next token on a webpage from the internet
期望的目标: follow the user’s instructions helpfully and safely (Radford et al., 2019; Brown et al., 2020; Fedus et al., 2021; Rae et al., 2021; Thoppilan et al., 2022)
因此我们说语言模型的的目标 没有对齐 (misaligned)
用户意图包含两类:
相关文章:
Training language models to follow instructions with human feedback
Abstract 使语言模型变得更大并不意味着它们本身就能更好地遵循用户的意图。模型的输出结果可能存在以下问题 不真实有毒对用户没有帮助即这些模型没有和用户 “对齐”(aligned) 在给定的 Prompt 分布上,1.3B 的 InstructGPT 的输出比 175B GPT-3 的输出更好(尽管参数量相…...
Netty核心原理剖析与RPC实践11-15
Netty核心原理剖析与RPC实践11-15 11 另起炉灶:Netty 数据传输载体 ByteBuf 详解 在学习编解码章节的过程中,我们看到 Netty 大量使用了自己实现的 ByteBuf 工具类,ByteBuf 是 Netty 的数据容器,所有网络通信中字节流的传输都是…...
3.5网安学习第三阶段第五周回顾(个人学习记录使用)
本周重点 ①SSRF服务器端请求伪造 ②序列化和反序列化 ③Vaudit代码审计 本周主要内容 ①SSRF服务器端请求伪造 一、概述 SSRF: server site request forgery (服务器端请求伪造)。 SSR: 服务端请求,A服务器通过函数向B服务器发送请求。 SSRF发生的前提条件…...
kali常用命令功能简介记录
Kali Linux中常用的命令: 1. apt-get update:更新软件源列表。 2. apt-get upgrade:升级系统中已安装的软件包。 3. apt-get install [软件包]:安装指定的软件包。 4. apt-get remove [软件包]:卸载指定的软件包。 5.…...
低噪声、轨至轨运算放大器芯片—— D721、D722、D724,适合用于音频领域
应用领域 D721、D722、D724是我们推荐的三款低噪声、轨至轨运算放大器芯片,其中D721为单运放,D722为双运放,D724为四运放。适合用于音频领域、传感器等的信号放大处理,比如K歌宝、音响、测距、滤波器、AD转换器前级信号处理等等。…...
【统计】什么事 R 方
将线性模型拟合到时间序列时,通常使用最小二乘法在模型 y ^ ( t ) a b t \hat{y}(t) a bt y^(t)abt中找到系数 a a a和 b b b,其中 y ^ ( t ) \hat{y}(t) y^(t)是时间 t t t的预测值,而的观测值是 y ( t ) y(t) y(t)。 残差平方和又…...
Maplesoft Maple 2024(数学科学计算)mac/win
Maplesoft Maple是一款强大的数学计算软件,提供了丰富的功能和工具,用于数学建模、符号计算、数据可视化等领域的数学分析和解决方案。 Mac版软件下载:Maplesoft Maple 2024 for mac激活版 WIn版软件下载:Maplesoft Maple 2024特别…...
实战 | YOLOv8自定义数据集训练实现手势识别 (标注+训练+预测 保姆级教程--含数据集)
导 读 本文将手把手教你用YoloV8训练自己的数据集并实现手势识别。 安装环境 【1】安装torch, torchvision对应版本,这里先下载好,直接安装 pip install torch-1.13.1+cu116-cp38-cp38-win_amd64.whlpip install torchvision-0.14.1+cu116-cp38-cp38-win_amd64.whl 安装好…...
从零学算法2810
2810.你的笔记本键盘存在故障,每当你在上面输入字符 ‘i’ 时,它会反转你所写的字符串。而输入其他字符则可以正常工作。 给你一个下标从 0 开始的字符串 s ,请你用故障键盘依次输入每个字符。 返回最终笔记本屏幕上输出的字符串。 示例 1&am…...
Vue——案例01(查询用户)
目录 一、案例实现页面 二、案例实现效果 1. 查询效果 2. 年龄升序 3. 年龄降序 4. 原顺序 三、案例实现思路 四、完整代码 一、案例实现页面 实现用户对年龄的升降的排序、根据名字搜索用户信息以及重新返回原序列 二、案例实现效果 1. 查询效果 2. 年龄升序 3. 年龄…...
【数据结构】线性表
文章目录 前言线性表的定义和基本操作1.线性表的定义2.线性表的基本操作 顺序表的定义1.静态分配方式2.动态分配方式 顺序表的插入和删除1.顺序表的插入2.顺序表的删除 顺序表的查找1.按位查找(简单)2.按值查找 单链表的定义1.代码定义一个单链表2.不带头…...
983. 最低票价 C++
class Solution { public:int mincostTickets(vector<int>& days, vector<int>& costs) {// 状态定义: f[i] 表示 i 天及之后 旅行所需的最小花费int f[366]{};// 标注哪些天 出门for (int v: days) f[v] 1;// 由于状态转移是逆向的 所以倒序 …...
紫光展锐P7885核心板详细参数介绍_5G安卓智能模块开发方案
紫光展锐P7885核心板采用了先进的6nm EUV制程工艺,集成了高性能的应用处理器和金融级安全解决方案,为用户带来了全新的性能体验。 P7885核心板搭载了先进的6nm制程工艺SoC P7885,其中包含四核A76和四核A55,主频可达2.7Ghz…...
Keil MDK 5.37 及之后版本 安装 AC5(ARMCC) 编译器详细步骤
由于 Keil 5.37 及之后版本不再默认安装 AC5(ARMCC) 编译器,这就会导致由 AC5 编译的工程无法正常编译,往往输出窗口会提示以下信息:*** Target ‘STM32xxxx‘ uses ARM-Compiler ‘Default Compiler Version 5‘ which is not available. —…...
速盾:cdn配置ssl
CDN(Content Delivery Network)是一种内容分发网络,它的作用是将原始服务器上的内容分发到全球各地的边缘节点上,以提高用户访问速度和稳定性。随着数据传输的安全性要求越来越高,配置SSL(Secure Sockets L…...
代码随想录算法训练营 Day41 动态规划3
Day41 动态规划3 343. 整数拆分 思路 不知道如何拆分,才能使乘积最大化 有什么理论依据? 根据代码随想录 拆分使乘积最大化逻辑:应该尽可能拆成相同的数 根据题目,发现,拆分后的数可以继续拆分,因此可…...
面试题:反推B+树高度
一个表5000w数据,一个数据行大小为1k,主键为long类型数据,假设指针大小为8B,页大小为16K,求B树的高度? B树的非叶子节点存储key和指针,叶子节点存储数据,对应表中的某些行。 叶子节点…...
瑞吉外卖实战学习--11、分类管理的列表分页查询
分类管理的列表分页查询 前言1、创建接口2、基于分页组件来实现的 前言 通过前端接口可以看到请求和传递的参数,本文章是基于mybatisPlus的分页插件来实现的 1、创建接口 GetMapping("/page")public R<Page> page(int page,int pageSize){ // …...
网络安全新视角:数据可视化的力量
在当今数字化时代,网络安全已成为各大企业乃至国家安全的重要组成部分。随着网络攻击的日益复杂和隐蔽,传统的网络安全防护措施已难以满足需求,急需新型的解决方案以增强网络防护能力。数据可视化技术,作为一种将复杂数据转换为图…...
Aurora8b10b(2)上板验证
文章目录 前言一、AXI_Stream数据产生模块二、上板效果总结 前言 上一篇内容我们已经详细介绍了基于aurora8b10b IP核的设计,本文将基于此进一步完善并且进行上板验证。 设计思路及代码思路参考FPGA奇哥系列网课 一、AXI_Stream数据产生模块 AXIS协议是非常简单的…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
6.9-QT模拟计算器
源码: 头文件: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);…...
