【BPNN】BP神经网络代码
主代码
%function main()
clc
clear
close all
%% 1.原始数据
%输入
SR1=[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ...41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];
SR2=[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6...2.7 2.85 2.95 3.1];
SR3=[0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 ... 0.56 0.59 0.59 0.67 0.69 0.79];
SHURU=[SR1;SR2;SR3];
%输出
SC1=[5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 ...22598 25107 33442 36836 40548 42927 43462];
SC2=[1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 ...13320 16762 18673 20724 20803 21804];
SHUCHU=[SC1;SC2];
%% 2.BP模型设置
HiddenUnitNum=5;%中间层隐节点数
XXSD=0.05;%学习速度
MAX_CS=50000;%最大训练轮回次数
RMSRMS=0.65*10^(-3);%均方误差
%% 训练完毕后的预测输入集
Input=[73.3900000000000,3.96350000000000,0.988000000000000;75.5500000000000,4.09750000000000,1.02680000000000]';%预测输入集数据
%% 训练
Results=BPNN(SHURU,SHUCHU,HiddenUnitNum,Input,XXSD,MAX_CS,RMSRMS);
BPNN.m
function [anew]=BPNN(SHURU,SHUCHU,HiddenUnitNum,pnew,XXSD,MAX_CS,RMSRMS)
%% 1.读取数据
[~,SamNum]=size(SHURU); %输入样本数量
TestSamNum=SamNum; %测试样本数量
[ForcastSamNum,~]=size(SHUCHU); %预测样本数量
[InDim,~]=size(SHURU); %网络输入维度
[OutDim,~]=size(SHUCHU); %网络输出维度%% 2.利用premnmx函数对数据进行归一化
p=SHURU; %输入数据矩阵
t=SHUCHU; %目标数据矩阵
[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 对于输入矩阵p和输出矩阵t进行归一化处理
for i=1:InDimdx(i,:)=[-1,1];%归一化处理后最小值为-1,最大值为1
end
%% 3.BP网络训练
net=newff(dx,[InDim,HiddenUnitNum,OutDim],{'tansig','tansig','purelin'},'traingdx'); %建立模型,并用梯度下降法训练.
net.trainParam.Lr=XXSD; %学习速度为0.05
net.trainParam.epochs=MAX_CS; %最大训练轮回为50000次
net.trainParam.goal=RMSRMS; %均方误差
net=train(net,pn,tn); %开始训练,其中pn,tn分别为输入输出样本
%利用原始数据对BP网络仿真
an=sim(net,pn); %用训练好的模型进行仿真
a=postmnmx(an,mint,maxt); % 把仿真得到的数据还原为原始的数量级;
%% 4.回归
pnewn=tramnmx(pnew,minp,maxp); %利用原始输入数据的归一化参数对新数据进行归一化;
anewn=sim(net,pnewn); %利用归一化后的数据进行仿真;
anew=postmnmx(anewn,mint,maxt); %把仿真得到的数据还原为原始的数量级;
相关文章:
【BPNN】BP神经网络代码
主代码 %function main() clc clear close all %% 1.原始数据 %输入 SR1[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ...41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63]; SR2[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.2…...
基于mqtt的物联网控制移动应用程序开发
具体实现问题 MQTT模型、特点、服务质量、报文、消息类型表 java实现mqtt两种方式:Paho Java原生库、spring boot MQTT与HTTP:哪一个最适合物联网? mqtt协议和http协议区别 应用是如何实现mqtt协议 通过调用安卓的MQTT库来实现MQTT协议&…...

MPLS-基础、LSR、LSP、标签、体系结构
MPLS技术 MPLS基础 MPLS:转发数据时,只在网络边缘分析IP报文头,不在每一跳都分析,节约了转发时间。 MPLS:Multiprotocol Label Switching,多协议标签交换骨干网技术。主要应用:VPN、流量工程…...
【RV1126】Ubuntu22.04下sdk编译问题汇集
对于新版本Ubuntu系统来编译SDK,尤其是buildroot ,是一个巨大考验,发现问题如下: 1. c-stack.c的SIGSTKSZ错误 buildroot 报错:c-stack.c:55:26:error:missing binary operator before token “(“55 在buildroot目录中找到c-s…...

51单片机使用uart串口和助手简单调试
基础知识 参考 特殊功能寄存器PCON(控制波特率是否加倍SMOD)、TMOD(T0,T1计时器的功能方式)、TCON(T0,T1计时器的控制)、串口中断、SCON(串口数据控制寄存器) 关闭定时器1中断&…...
Python网络爬虫(五):b站弹幕
上一篇对b站的视频评论爬取进行了探讨,这一篇是弹幕。直接上代码: import csv import json import re import chardet import requestsheaders = {user-agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Saf…...
Docker环境安装Postgresql数据库Posrgresql 15.6
宿主机是ubuntu 22.04版本 ubuntu宿主机上安装docker,参见官方文档https://docs.docker.com/engine/install/ubuntu/, docker-ce是社区版 docker-ee是企业版 1、检查Docker是否安装 rootODS1SPGOFSDEV:~# docker Command docker not found, but can be installed …...

当代软件专业大学生与青年在新质生产力背景下的发展探究
在新质生产力的浪潮中,信息技术以前所未有的速度革新,为软件专业的大学生和青年带来了丰富的机遇,同时也伴随着一系列的挑战。他们如何把握时代的脉搏,实现个人的发展,成为了值得深入探讨的话题。 一、新质生产力背景下的机遇 随着新质生产力的不断发展,信息技术在各个领…...

MATLAB——知识点备忘
最近在攻略ADC建模相关方面,由好多零碎的知识点,这里写个备忘录。 Matlab 判断一个数是否为整数 1. isinteger 函数 MATLAB中,可以使用 isinteger 函数来判断一个数是否为整数,例如:要判断x是否为整数可以采用以下代…...

C++入门(以c为基础)——学习笔记2
1.引用 引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空 间。在语法层面,我们认为它和它引用的变量共用同一块内存空间。 可以取多个别名,也可以给别名取别名。 b/c/d本质都是别名&#…...
设计模式-单例模式(懒汉式)
1. 概念 保证一个类只有一个实例并为该实例提供一个全局唯一的访问节点 2. 懒汉式-方式一 2.1 代码示例(方式一) 示例 public class Singleton03 {/*** 构造器私有化*/private Singleton03() {}/*** 成员变量*/private static Singleton03 INSTANCE;…...
算法| ss 回溯
39.组合总数46.全排列—478.子集79.单词搜索—1连续差相同的数字—1 39.组合总数 /*** param {number[]} candidates* param {number} target* return {number[][]}*/ // 思路 // dfs传参,传idx, 剩余target // dfs返回: 0 收集,…...

基于R语言绘制-散点小提琴图
原文链接:R语言绘图 | 散点小提琴图 本期教程 写在前面 本期的图形来自发表在Nature期刊中的文章,这样的基础图形在日常分析中使用频率较高。 获得本期教程数据及代码,后台回复关键词:20240405 绘图 设置路径 setwd("You…...

Arduino开发 esp32cam+opencv人脸识别距离+语音提醒
效果图 低于20厘米语音提醒字体变红 Arduino代码 可直接复制使用(修改自己的WIFI) #include <esp32cam.h> #include <WebServer.h> #include <WiFi.h> // 设置要连接的WiFi名称和密码 const char* WIFI_SSID "gumou"; const char* …...

LeNet卷积神经网络
文章目录 简介conv2d网络层的结构 简介 它是最早发布的卷积神经网络之一 conv2d 这个卷积成的参数先进行介绍一下: self.conv1 nn.Conv2d(in_channels3, out_channels10, kernel_size3, stride1, padding1)先看一下in_channels 输入的通道数,out_cha…...

Python常用算法思想--回溯算法思想详解【附源码】
通过回溯算法解决“组合”问题、“排序”问题、“搜索”之八皇后问题、“子集和”之0-1背包问题、字符串匹配等六个经典案例进行介绍: 一、解决“组合”问题 从给定的一组元素中找到所有可能的组合,这段代码中的 backtrack_combinations 函数使用了回溯思想,调用 backtrack…...

Day5-Hive的结构和优化、数据文件存储格式
Hive 窗口函数 案例 需求:连续三天登陆的用户数据 步骤: -- 建表 create table logins (username string,log_date string ) row format delimited fields terminated by ; -- 加载数据 load data local inpath /opt/hive_data/login into table log…...
01 计算机网络发展与分类
计算机网络:计算机技术与通信技术的结合。 阶段一:早期网络:ARPAnet。 阶段二:厂商独立发展阶段 阶段三:标准化阶段:ISO,TCP/IP 计算机网络分类 计算机网络分类1:通信子网和资源子网 通信子…...

ubuntu安装sublime3并设置中文
安装Sublime Text 3 在Ubuntu上安装Sublime Text 3可以通过以下步骤进行: 打开终端。 导入Sublime Text 3的GPG密钥: wget -qO- https://download.sublimetext.com/sublimehq-pub.gpg | sudo apt-key add - 添加Sublime Text 3的存储库: …...

python调用阿里云短信配置
1. 新增资质和签名 # 访问地址: https://dysms.console.aliyun.com/domestic/text/qualification2. 静静等待几十分钟~~~ 3. 通过sdk去调用,查看有没有python的sdk https://next.api.aliyun.com/api/Dysmsapi/2017-05-25/SendSms?完整代码 # -*- cod…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...

LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...