paddlepaddle模型转换onnx指导文档
一、检查本机cuda版本
1、右键找到invdia控制面板

2、找到系统信息

3、点开“组件”选项卡, 可以看到cuda版本,我们这里是cuda11.7

cuda驱动版本为516.94

二、安装paddlepaddle环境
1、获取pip安装命令 ,我们到paddlepaddle官网,找到cuda对应的安装命令

因为安装 完成paddlepaddle后还需要安装其他依赖,所以我们加上 -i 指定国内的pip源
python -m pip install -i https://mirror.baidu.com/pypi/simple paddlepaddle-gpu==2.5.1.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html
2、在anaconda中新建一个python3.9的环境
conda create -n py39_paddle python=3.9
3、切换conda环境到我们新建的环境
conda activate py39_paddle
4、运行pip安装命令
python -m pip install -i https://mirror.baidu.com/pypi/simple paddlepaddle-gpu==2.5.1.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.htmlInstalling collected packages: paddle-bfloat, sniffio, protobuf, Pillow, numpy, idna, h11, exceptiongroup, decorator, certifi, astor, opt-einsum, anyio, httpcore, httpx, paddlepaddle-gpu
Successfully installed Pillow-10.0.1 anyio-4.0.0 astor-0.8.1 certifi-2023.7.22 decorator-5.1.1 exceptiongroup-1.1.3 h11-0.14.0 httpcore-0.18.0 httpx-0.25.0 idna-3.4 numpy-1.26.0 opt-einsum-3.3.0 paddle-bfloat-0.1.7 paddlepaddle-gpu-2.5.1.post117 protobuf-3.20.2 sniffio-1.3.0
安装成功!!
三、模型转换
1、安装转换工具paddle2onnx
python -m pip install -i https://mirror.baidu.com/pypi/simple paddle2onnx
2.训练模型
import paddle
from paddle.vision.transforms import Normalizetransform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')
# 下载数据集并初始化 DataSet
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)# 模型组网并初始化网络
lenet = paddle.vision.models.LeNet(num_classes=10)
model = paddle.Model(lenet)# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),paddle.nn.CrossEntropyLoss(),paddle.metric.Accuracy())# 模型训练
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)
3.环境报错

报错内容: cudnn没有装!
4、安装cudnn,cudatookit,参考:cudnn安装指导
https://www.notion.so/3a4f57edc6e54e4eaa63ed86234cf533?pvs=25
5、训练成功!

6、模型转换
# export to ONNX
save_path = 'onnx.save/lenet1' # 需要保存的路径
x_spec = paddle.static.InputSpec([None, 1, 28, 28], 'float32', 'x') # 为模型指定输入的形状和数据类型,支持持 Tensor 或 InputSpec ,InputSpec 支持动态的 shape。
paddle.onnx.export(lenet, save_path, input_spec=[x_spec], opset_version=14)

成功生成onnx文件
7、检查转换结果,没有问题
# 导入 ONNX 库
import onnx
# 载入 ONNX 模型
onnx_model = onnx.load("onnx.save/lenet1.onnx")
# 使用 ONNX 库检查 ONNX 模型是否合理
check = onnx.checker.check_model(onnx_model)
# 打印检查结果
print('check: ', check)
check: None
四、模型精度测试
1、paddlepaddle模型推理
import onnxruntime
import numpy as np
img = np.random.randn(1, 1, 28, 28).astype(np.float32)
lenet.eval()
paddle_input = paddle.to_tensor(img)
pad_output = lenet(paddle_input)
2、onnx模型推理
ort_session = onnxruntime.InferenceSession('onnx.save/lenet1.onnx',providers=['CPUExecutionProvider', 'CUDAExecutionProvider'])
model_inputs = ort_session.get_inputs()
ort_inputs = {model_inputs[0].name: img}
onnx_output = ort_session.run(['linear_11.tmp_1'], ort_inputs)[0]
### 3、检查推理 结果
paddle.max(pad_output-onnx_output)
Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=False,0.00000381)
相关文章:
paddlepaddle模型转换onnx指导文档
一、检查本机cuda版本 1、右键找到invdia控制面板 2、找到系统信息 3、点开“组件”选项卡, 可以看到cuda版本,我们这里是cuda11.7 cuda驱动版本为516.94 二、安装paddlepaddle环境 1、获取pip安装命令 ,我们到paddlepaddle官网ÿ…...
图像处理与视觉感知---期末复习重点(6)
文章目录 一、图像分割二、间断检测2.1 概述2.2 点检测2.3 线检测2.4 边缘检测 三、边缘连接3.1 概述3.2 Hough变换3.3 例子3.4 Hough变换的具体步骤3.5 Hough变换的法线表示形式3.6 Hough变换的扩展 四、阈值处理4.1 概述4.2 计算基本全局阈值算法4.3 自适应阈值 五、基于区域…...
git 如何删除本地和远程分支
删除本地分支 确认当前分支:首先,确保你没有在要删除的分支上。你可以通过运行git branch命令来查看当前的分支。 切换分支:如果你在要删除的分支上,需要先切换到另一个分支。例如,切换到main分支,可以使用…...
Kong基于QPS、IP限流
Rate Limiting限流插件 https://docs.konghq.com/hub/kong-inc/rate-limiting/ 它可以针对consumer ,credential ,ip ,service,path,header 等多种维度来进行限流.流量控制的精准度也有多种方式可以参考,比如可以做到秒级,分钟级,小时级等限流控制. 基于IP限流 源码地址&…...
基于springboot实现甘肃非物质文化网站系统项目【项目源码+论文说明】
摘要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本甘肃非物质文化网站就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信…...
【瑞萨RA6M3】1. 基于 vscode 搭建开发环境
基于 vscode 搭建开发环境 1. 准备2. 安装2.1. 安装瑞萨软件包2.2. 安装编译器2.3. 安装 cmake2.4. 安装 openocd2.5. 安装 ninja2.6. 安装 make 3. 生成初始代码4. 修改 cmake 脚本5. 调试准备6. 仿真 1. 准备 需要瑞萨仓库中的两个软件: MDK_Device_Packs.zipse…...
使用pip install替代conda install将packet下载到anaconda虚拟环境
问题描述 使用conda install 下载 stable_baseline3出现问题 一番搜索下是Anaconda.org缺少源 解决方法 首先使用管理员权限打开 anaconda prompt 然后激活目标环境:conda activate env_name 接着使用:conda env list查看目标env的位置 如D:\anacon…...
【HTML】常用CSS属性
文章目录 前言1、字体和文本属性2、边距和填充3、border边框4、列表属性 前言 上一篇我们学习了CSS扩展选择器以及它的继承性,对于页面元素样式设置相信大家都不陌生了。 这一篇我们就来看看具体都有哪些样式可以设置?又该如何设置? 喜欢的【…...
python中的print(f‘‘)具体用法
在Python中,print(f) 是格式化字符串(f-string)的语法,它允许你在字符串中嵌入表达式,这些表达式在运行时会被其值所替换。f 或 F 前缀表示这是一个格式化字符串字面量。 在 f 或 F 中的大括号 {} 内,你可…...
《青少年成长管理2024》022 “成长七要素之三:文化”4/5
《青少年成长管理2024》022 “成长七要素之三:文化”4/5 七、物质文化(一)什么是物质文化(二)物质文化的分类(三)人类物质文化最新成果有哪些(四)青少年了解物质文化的途…...
Linux(05) Debian 系统修改主机名
查看主机名 方法1:hostname hostname 方法2:cat etc/hostname cat /etc/hostname 如果在创建Linux系统的时候忘记修改主机名,可以采用以下的方式来修改主机名称。 修改主机名 注意,在linux中下划线“_”可能是无效的字符&…...
之前翻硬币问题胡思乱想的完善
题目背景 小明正在玩一个“翻硬币”的游戏。 题目描述 桌上放着排成一排的若干硬币。我们用 * 表示正面,用 o 表示反面(是小写字母,不是零),比如可能情形是 **oo***oooo,如果同时翻转左边的两个硬币&#x…...
前端与后端协同:实现Excel导入导出功能
🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…...
Docker:探索容器化技术,重塑云计算时代应用交付与管理
一,引言 在云计算时代,随着开发者逐步将应用迁移至云端以减轻硬件管理负担,软件配置与环境一致性问题日益凸显。Docker的横空出世,恰好为软件开发者带来了全新的解决方案,它革新了软件的打包、分发和管理方式ÿ…...
畅捷通T+ KeyInfoList.aspx SQL漏洞复现
0x01 产品简介 畅捷通 T+ 是一款灵动,智慧,时尚的基于互联网时代开发的管理软件,主要针对中小型工贸与商贸企业,尤其适合有异地多组织机构(多工厂,多仓库,多办事处,多经销商)的企业,涵盖了财务,业务,生产等领域的应用,产品应用功能包括:采购管理、库存管理、销售…...
【面经】interrupt()、interrupted()和isInterrupted()的区别与使用
📝个人主页:五敷有你 🔥系列专栏:面经 ⛺️稳中求进,晒太阳 interrupt方法 如果打断线程正在sleep,wait,join会导致被打断的线程抛出InterruptedException,并清除打断标记。如…...
了解这些技术:Flutter应用顺利登陆iOS平台的步骤与方法
引言 🚀 Flutter作为一种跨平台的移动应用程序开发框架,为开发者提供了便利,使他们能够通过单一的代码库构建出高性能、高保真度的应用程序,同时支持Android和iOS两个平台。然而,完成Flutter应用程序的开发只是第一步…...
经济学 劳动市场 医疗经济学
目录 劳动市场 医疗经济学 劳动市场 自愿交换 劳动力的供给,取决于能够胜任这个工作的人的数量,雇主提供的工资必须要能覆盖他的机会成本,他失去的自由世界和他做其他事情能够挣到钱 派生需求:劳动力的需求,取决于…...
vue + koa + Sequelize + 阿里云部署 + 宝塔:宝塔数据库连接
之前文章已经介绍了宝塔上传前后端代码并部署,不清楚的请看这篇文章: vue koa 阿里云部署 宝塔:宝塔前后端部署 下面是宝塔创建数据库: 我用的 koa Sequelize 连接的数据库,Sequelize 非常适合前端使用…...
华为昇腾认证考试内容有哪些
华为昇腾认证考试的内容主要包括理论知识和实践操作两部分。 在理论知识部分,考生需要掌握昇腾计算的基础知识,包括昇腾计算平台的架构、性能特点、应用场景等。此外,还需要深入理解昇腾AI框架、算子开发、模型优化等相关技术原理和应用方法…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
