当前位置: 首页 > news >正文

paddlepaddle模型转换onnx指导文档

一、检查本机cuda版本

1、右键找到invdia控制面板

在这里插入图片描述

2、找到系统信息

在这里插入图片描述

3、点开“组件”选项卡, 可以看到cuda版本,我们这里是cuda11.7

在这里插入图片描述

cuda驱动版本为516.94
在这里插入图片描述

二、安装paddlepaddle环境

1、获取pip安装命令 ,我们到paddlepaddle官网,找到cuda对应的安装命令

在这里插入图片描述

因为安装 完成paddlepaddle后还需要安装其他依赖,所以我们加上 -i 指定国内的pip源

python -m pip install -i   https://mirror.baidu.com/pypi/simple  paddlepaddle-gpu==2.5.1.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html

2、在anaconda中新建一个python3.9的环境

conda create -n py39_paddle python=3.9

3、切换conda环境到我们新建的环境

conda activate py39_paddle

4、运行pip安装命令

python -m pip install -i   https://mirror.baidu.com/pypi/simple  paddlepaddle-gpu==2.5.1.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.htmlInstalling collected packages: paddle-bfloat, sniffio, protobuf, Pillow, numpy, idna, h11, exceptiongroup, decorator, certifi, astor, opt-einsum, anyio, httpcore, httpx, paddlepaddle-gpu
Successfully installed Pillow-10.0.1 anyio-4.0.0 astor-0.8.1 certifi-2023.7.22 decorator-5.1.1 exceptiongroup-1.1.3 h11-0.14.0 httpcore-0.18.0 httpx-0.25.0 idna-3.4 numpy-1.26.0 opt-einsum-3.3.0 paddle-bfloat-0.1.7 paddlepaddle-gpu-2.5.1.post117 protobuf-3.20.2 sniffio-1.3.0

安装成功!!

三、模型转换

1、安装转换工具paddle2onnx

python -m pip install -i   https://mirror.baidu.com/pypi/simple  paddle2onnx

2.训练模型

import paddle
from paddle.vision.transforms import Normalizetransform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')
# 下载数据集并初始化 DataSet
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)# 模型组网并初始化网络
lenet = paddle.vision.models.LeNet(num_classes=10)
model = paddle.Model(lenet)# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),paddle.nn.CrossEntropyLoss(),paddle.metric.Accuracy())# 模型训练
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)

3.环境报错

在这里插入图片描述
报错内容: cudnn没有装!

4、安装cudnn,cudatookit,参考:cudnn安装指导

https://www.notion.so/3a4f57edc6e54e4eaa63ed86234cf533?pvs=25

5、训练成功!

在这里插入图片描述

6、模型转换

# export to ONNX
save_path = 'onnx.save/lenet1' # 需要保存的路径
x_spec = paddle.static.InputSpec([None, 1, 28, 28], 'float32', 'x') # 为模型指定输入的形状和数据类型,支持持 Tensor 或 InputSpec ,InputSpec 支持动态的 shape。
paddle.onnx.export(lenet, save_path, input_spec=[x_spec], opset_version=14)

在这里插入图片描述
成功生成onnx文件

7、检查转换结果,没有问题

# 导入 ONNX 库
import onnx
# 载入 ONNX 模型
onnx_model = onnx.load("onnx.save/lenet1.onnx")
# 使用 ONNX 库检查 ONNX 模型是否合理
check = onnx.checker.check_model(onnx_model)
# 打印检查结果
print('check: ', check)
check:  None

四、模型精度测试

1、paddlepaddle模型推理

import onnxruntime
import numpy as np
img = np.random.randn(1, 1, 28, 28).astype(np.float32)
lenet.eval()
paddle_input = paddle.to_tensor(img) 
pad_output = lenet(paddle_input)

2、onnx模型推理

ort_session = onnxruntime.InferenceSession('onnx.save/lenet1.onnx',providers=['CPUExecutionProvider', 'CUDAExecutionProvider'])
model_inputs = ort_session.get_inputs()
ort_inputs = {model_inputs[0].name: img}
onnx_output = ort_session.run(['linear_11.tmp_1'], ort_inputs)[0]

### 3、检查推理 结果

paddle.max(pad_output-onnx_output)
Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=False,0.00000381)

相关文章:

paddlepaddle模型转换onnx指导文档

一、检查本机cuda版本 1、右键找到invdia控制面板 2、找到系统信息 3、点开“组件”选项卡, 可以看到cuda版本,我们这里是cuda11.7 cuda驱动版本为516.94 二、安装paddlepaddle环境 1、获取pip安装命令 ,我们到paddlepaddle官网&#xff…...

图像处理与视觉感知---期末复习重点(6)

文章目录 一、图像分割二、间断检测2.1 概述2.2 点检测2.3 线检测2.4 边缘检测 三、边缘连接3.1 概述3.2 Hough变换3.3 例子3.4 Hough变换的具体步骤3.5 Hough变换的法线表示形式3.6 Hough变换的扩展 四、阈值处理4.1 概述4.2 计算基本全局阈值算法4.3 自适应阈值 五、基于区域…...

git 如何删除本地和远程分支

删除本地分支 确认当前分支:首先,确保你没有在要删除的分支上。你可以通过运行git branch命令来查看当前的分支。 切换分支:如果你在要删除的分支上,需要先切换到另一个分支。例如,切换到main分支,可以使用…...

Kong基于QPS、IP限流

Rate Limiting限流插件 https://docs.konghq.com/hub/kong-inc/rate-limiting/ 它可以针对consumer ,credential ,ip ,service,path,header 等多种维度来进行限流.流量控制的精准度也有多种方式可以参考,比如可以做到秒级,分钟级,小时级等限流控制. 基于IP限流 源码地址&…...

基于springboot实现甘肃非物质文化网站系统项目【项目源码+论文说明】

摘要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本甘肃非物质文化网站就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信…...

【瑞萨RA6M3】1. 基于 vscode 搭建开发环境

基于 vscode 搭建开发环境 1. 准备2. 安装2.1. 安装瑞萨软件包2.2. 安装编译器2.3. 安装 cmake2.4. 安装 openocd2.5. 安装 ninja2.6. 安装 make 3. 生成初始代码4. 修改 cmake 脚本5. 调试准备6. 仿真 1. 准备 需要瑞萨仓库中的两个软件: MDK_Device_Packs.zipse…...

使用pip install替代conda install将packet下载到anaconda虚拟环境

问题描述 使用conda install 下载 stable_baseline3出现问题 一番搜索下是Anaconda.org缺少源 解决方法 首先使用管理员权限打开 anaconda prompt 然后激活目标环境:conda activate env_name 接着使用:conda env list查看目标env的位置 如D:\anacon…...

【HTML】常用CSS属性

文章目录 前言1、字体和文本属性2、边距和填充3、border边框4、列表属性 前言 上一篇我们学习了CSS扩展选择器以及它的继承性,对于页面元素样式设置相信大家都不陌生了。 这一篇我们就来看看具体都有哪些样式可以设置?又该如何设置? 喜欢的【…...

python中的print(f‘‘)具体用法

在Python中,print(f) 是格式化字符串(f-string)的语法,它允许你在字符串中嵌入表达式,这些表达式在运行时会被其值所替换。f 或 F 前缀表示这是一个格式化字符串字面量。 在 f 或 F 中的大括号 {} 内,你可…...

《青少年成长管理2024》022 “成长七要素之三:文化”4/5

《青少年成长管理2024》022 “成长七要素之三:文化”4/5 七、物质文化(一)什么是物质文化(二)物质文化的分类(三)人类物质文化最新成果有哪些(四)青少年了解物质文化的途…...

Linux(05) Debian 系统修改主机名

查看主机名 方法1:hostname hostname 方法2:cat etc/hostname cat /etc/hostname 如果在创建Linux系统的时候忘记修改主机名,可以采用以下的方式来修改主机名称。 修改主机名 注意,在linux中下划线“_”可能是无效的字符&…...

之前翻硬币问题胡思乱想的完善

题目背景 小明正在玩一个“翻硬币”的游戏。 题目描述 桌上放着排成一排的若干硬币。我们用 * 表示正面,用 o 表示反面(是小写字母,不是零),比如可能情形是 **oo***oooo,如果同时翻转左边的两个硬币&#x…...

前端与后端协同:实现Excel导入导出功能

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…...

Docker:探索容器化技术,重塑云计算时代应用交付与管理

一,引言 在云计算时代,随着开发者逐步将应用迁移至云端以减轻硬件管理负担,软件配置与环境一致性问题日益凸显。Docker的横空出世,恰好为软件开发者带来了全新的解决方案,它革新了软件的打包、分发和管理方式&#xff…...

畅捷通T+ KeyInfoList.aspx SQL漏洞复现

0x01 产品简介 畅捷通 T+ 是一款灵动,智慧,时尚的基于互联网时代开发的管理软件,主要针对中小型工贸与商贸企业,尤其适合有异地多组织机构(多工厂,多仓库,多办事处,多经销商)的企业,涵盖了财务,业务,生产等领域的应用,产品应用功能包括:采购管理、库存管理、销售…...

【面经】interrupt()、interrupted()和isInterrupted()的区别与使用

📝个人主页:五敷有你 🔥系列专栏:面经 ⛺️稳中求进,晒太阳 interrupt方法 如果打断线程正在sleep,wait,join会导致被打断的线程抛出InterruptedException,并清除打断标记。如…...

了解这些技术:Flutter应用顺利登陆iOS平台的步骤与方法

引言 🚀 Flutter作为一种跨平台的移动应用程序开发框架,为开发者提供了便利,使他们能够通过单一的代码库构建出高性能、高保真度的应用程序,同时支持Android和iOS两个平台。然而,完成Flutter应用程序的开发只是第一步…...

经济学 劳动市场 医疗经济学

目录 劳动市场 医疗经济学 劳动市场 自愿交换 劳动力的供给,取决于能够胜任这个工作的人的数量,雇主提供的工资必须要能覆盖他的机会成本,他失去的自由世界和他做其他事情能够挣到钱 派生需求:劳动力的需求,取决于…...

vue + koa + Sequelize + 阿里云部署 + 宝塔:宝塔数据库连接

之前文章已经介绍了宝塔上传前后端代码并部署,不清楚的请看这篇文章: vue koa 阿里云部署 宝塔:宝塔前后端部署 下面是宝塔创建数据库: 我用的 koa Sequelize 连接的数据库,Sequelize 非常适合前端使用&#xf…...

华为昇腾认证考试内容有哪些

华为昇腾认证考试的内容主要包括理论知识和实践操作两部分。 在理论知识部分,考生需要掌握昇腾计算的基础知识,包括昇腾计算平台的架构、性能特点、应用场景等。此外,还需要深入理解昇腾AI框架、算子开发、模型优化等相关技术原理和应用方法…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1&#xff1a;HTML/CSS 前端高频面试题2&#xff1a;浏览器/计算机网络 前端高频面试题3&#xff1a;JavaScript 1.什么是强缓存、协商缓存&#xff1f; 强缓存&#xff1a; 当浏览器请求资源时&#xff0c;首先检查本地缓存是否命中。如果命…...