paddlepaddle模型转换onnx指导文档
一、检查本机cuda版本
1、右键找到invdia控制面板

2、找到系统信息

3、点开“组件”选项卡, 可以看到cuda版本,我们这里是cuda11.7

cuda驱动版本为516.94

二、安装paddlepaddle环境
1、获取pip安装命令 ,我们到paddlepaddle官网,找到cuda对应的安装命令

因为安装 完成paddlepaddle后还需要安装其他依赖,所以我们加上 -i 指定国内的pip源
python -m pip install -i https://mirror.baidu.com/pypi/simple paddlepaddle-gpu==2.5.1.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html
2、在anaconda中新建一个python3.9的环境
conda create -n py39_paddle python=3.9
3、切换conda环境到我们新建的环境
conda activate py39_paddle
4、运行pip安装命令
python -m pip install -i https://mirror.baidu.com/pypi/simple paddlepaddle-gpu==2.5.1.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.htmlInstalling collected packages: paddle-bfloat, sniffio, protobuf, Pillow, numpy, idna, h11, exceptiongroup, decorator, certifi, astor, opt-einsum, anyio, httpcore, httpx, paddlepaddle-gpu
Successfully installed Pillow-10.0.1 anyio-4.0.0 astor-0.8.1 certifi-2023.7.22 decorator-5.1.1 exceptiongroup-1.1.3 h11-0.14.0 httpcore-0.18.0 httpx-0.25.0 idna-3.4 numpy-1.26.0 opt-einsum-3.3.0 paddle-bfloat-0.1.7 paddlepaddle-gpu-2.5.1.post117 protobuf-3.20.2 sniffio-1.3.0
安装成功!!
三、模型转换
1、安装转换工具paddle2onnx
python -m pip install -i https://mirror.baidu.com/pypi/simple paddle2onnx
2.训练模型
import paddle
from paddle.vision.transforms import Normalizetransform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')
# 下载数据集并初始化 DataSet
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)# 模型组网并初始化网络
lenet = paddle.vision.models.LeNet(num_classes=10)
model = paddle.Model(lenet)# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),paddle.nn.CrossEntropyLoss(),paddle.metric.Accuracy())# 模型训练
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)
3.环境报错

报错内容: cudnn没有装!
4、安装cudnn,cudatookit,参考:cudnn安装指导
https://www.notion.so/3a4f57edc6e54e4eaa63ed86234cf533?pvs=25
5、训练成功!

6、模型转换
# export to ONNX
save_path = 'onnx.save/lenet1' # 需要保存的路径
x_spec = paddle.static.InputSpec([None, 1, 28, 28], 'float32', 'x') # 为模型指定输入的形状和数据类型,支持持 Tensor 或 InputSpec ,InputSpec 支持动态的 shape。
paddle.onnx.export(lenet, save_path, input_spec=[x_spec], opset_version=14)

成功生成onnx文件
7、检查转换结果,没有问题
# 导入 ONNX 库
import onnx
# 载入 ONNX 模型
onnx_model = onnx.load("onnx.save/lenet1.onnx")
# 使用 ONNX 库检查 ONNX 模型是否合理
check = onnx.checker.check_model(onnx_model)
# 打印检查结果
print('check: ', check)
check: None
四、模型精度测试
1、paddlepaddle模型推理
import onnxruntime
import numpy as np
img = np.random.randn(1, 1, 28, 28).astype(np.float32)
lenet.eval()
paddle_input = paddle.to_tensor(img)
pad_output = lenet(paddle_input)
2、onnx模型推理
ort_session = onnxruntime.InferenceSession('onnx.save/lenet1.onnx',providers=['CPUExecutionProvider', 'CUDAExecutionProvider'])
model_inputs = ort_session.get_inputs()
ort_inputs = {model_inputs[0].name: img}
onnx_output = ort_session.run(['linear_11.tmp_1'], ort_inputs)[0]
### 3、检查推理 结果
paddle.max(pad_output-onnx_output)
Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=False,0.00000381)
相关文章:
paddlepaddle模型转换onnx指导文档
一、检查本机cuda版本 1、右键找到invdia控制面板 2、找到系统信息 3、点开“组件”选项卡, 可以看到cuda版本,我们这里是cuda11.7 cuda驱动版本为516.94 二、安装paddlepaddle环境 1、获取pip安装命令 ,我们到paddlepaddle官网ÿ…...
图像处理与视觉感知---期末复习重点(6)
文章目录 一、图像分割二、间断检测2.1 概述2.2 点检测2.3 线检测2.4 边缘检测 三、边缘连接3.1 概述3.2 Hough变换3.3 例子3.4 Hough变换的具体步骤3.5 Hough变换的法线表示形式3.6 Hough变换的扩展 四、阈值处理4.1 概述4.2 计算基本全局阈值算法4.3 自适应阈值 五、基于区域…...
git 如何删除本地和远程分支
删除本地分支 确认当前分支:首先,确保你没有在要删除的分支上。你可以通过运行git branch命令来查看当前的分支。 切换分支:如果你在要删除的分支上,需要先切换到另一个分支。例如,切换到main分支,可以使用…...
Kong基于QPS、IP限流
Rate Limiting限流插件 https://docs.konghq.com/hub/kong-inc/rate-limiting/ 它可以针对consumer ,credential ,ip ,service,path,header 等多种维度来进行限流.流量控制的精准度也有多种方式可以参考,比如可以做到秒级,分钟级,小时级等限流控制. 基于IP限流 源码地址&…...
基于springboot实现甘肃非物质文化网站系统项目【项目源码+论文说明】
摘要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本甘肃非物质文化网站就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信…...
【瑞萨RA6M3】1. 基于 vscode 搭建开发环境
基于 vscode 搭建开发环境 1. 准备2. 安装2.1. 安装瑞萨软件包2.2. 安装编译器2.3. 安装 cmake2.4. 安装 openocd2.5. 安装 ninja2.6. 安装 make 3. 生成初始代码4. 修改 cmake 脚本5. 调试准备6. 仿真 1. 准备 需要瑞萨仓库中的两个软件: MDK_Device_Packs.zipse…...
使用pip install替代conda install将packet下载到anaconda虚拟环境
问题描述 使用conda install 下载 stable_baseline3出现问题 一番搜索下是Anaconda.org缺少源 解决方法 首先使用管理员权限打开 anaconda prompt 然后激活目标环境:conda activate env_name 接着使用:conda env list查看目标env的位置 如D:\anacon…...
【HTML】常用CSS属性
文章目录 前言1、字体和文本属性2、边距和填充3、border边框4、列表属性 前言 上一篇我们学习了CSS扩展选择器以及它的继承性,对于页面元素样式设置相信大家都不陌生了。 这一篇我们就来看看具体都有哪些样式可以设置?又该如何设置? 喜欢的【…...
python中的print(f‘‘)具体用法
在Python中,print(f) 是格式化字符串(f-string)的语法,它允许你在字符串中嵌入表达式,这些表达式在运行时会被其值所替换。f 或 F 前缀表示这是一个格式化字符串字面量。 在 f 或 F 中的大括号 {} 内,你可…...
《青少年成长管理2024》022 “成长七要素之三:文化”4/5
《青少年成长管理2024》022 “成长七要素之三:文化”4/5 七、物质文化(一)什么是物质文化(二)物质文化的分类(三)人类物质文化最新成果有哪些(四)青少年了解物质文化的途…...
Linux(05) Debian 系统修改主机名
查看主机名 方法1:hostname hostname 方法2:cat etc/hostname cat /etc/hostname 如果在创建Linux系统的时候忘记修改主机名,可以采用以下的方式来修改主机名称。 修改主机名 注意,在linux中下划线“_”可能是无效的字符&…...
之前翻硬币问题胡思乱想的完善
题目背景 小明正在玩一个“翻硬币”的游戏。 题目描述 桌上放着排成一排的若干硬币。我们用 * 表示正面,用 o 表示反面(是小写字母,不是零),比如可能情形是 **oo***oooo,如果同时翻转左边的两个硬币&#x…...
前端与后端协同:实现Excel导入导出功能
🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…...
Docker:探索容器化技术,重塑云计算时代应用交付与管理
一,引言 在云计算时代,随着开发者逐步将应用迁移至云端以减轻硬件管理负担,软件配置与环境一致性问题日益凸显。Docker的横空出世,恰好为软件开发者带来了全新的解决方案,它革新了软件的打包、分发和管理方式ÿ…...
畅捷通T+ KeyInfoList.aspx SQL漏洞复现
0x01 产品简介 畅捷通 T+ 是一款灵动,智慧,时尚的基于互联网时代开发的管理软件,主要针对中小型工贸与商贸企业,尤其适合有异地多组织机构(多工厂,多仓库,多办事处,多经销商)的企业,涵盖了财务,业务,生产等领域的应用,产品应用功能包括:采购管理、库存管理、销售…...
【面经】interrupt()、interrupted()和isInterrupted()的区别与使用
📝个人主页:五敷有你 🔥系列专栏:面经 ⛺️稳中求进,晒太阳 interrupt方法 如果打断线程正在sleep,wait,join会导致被打断的线程抛出InterruptedException,并清除打断标记。如…...
了解这些技术:Flutter应用顺利登陆iOS平台的步骤与方法
引言 🚀 Flutter作为一种跨平台的移动应用程序开发框架,为开发者提供了便利,使他们能够通过单一的代码库构建出高性能、高保真度的应用程序,同时支持Android和iOS两个平台。然而,完成Flutter应用程序的开发只是第一步…...
经济学 劳动市场 医疗经济学
目录 劳动市场 医疗经济学 劳动市场 自愿交换 劳动力的供给,取决于能够胜任这个工作的人的数量,雇主提供的工资必须要能覆盖他的机会成本,他失去的自由世界和他做其他事情能够挣到钱 派生需求:劳动力的需求,取决于…...
vue + koa + Sequelize + 阿里云部署 + 宝塔:宝塔数据库连接
之前文章已经介绍了宝塔上传前后端代码并部署,不清楚的请看这篇文章: vue koa 阿里云部署 宝塔:宝塔前后端部署 下面是宝塔创建数据库: 我用的 koa Sequelize 连接的数据库,Sequelize 非常适合前端使用…...
华为昇腾认证考试内容有哪些
华为昇腾认证考试的内容主要包括理论知识和实践操作两部分。 在理论知识部分,考生需要掌握昇腾计算的基础知识,包括昇腾计算平台的架构、性能特点、应用场景等。此外,还需要深入理解昇腾AI框架、算子开发、模型优化等相关技术原理和应用方法…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
