当前位置: 首页 > news >正文

LeetCode-347. 前 K 个高频元素【数组 哈希表 分治 桶排序 计数 快速选择 排序 堆(优先队列)】

LeetCode-347. 前 K 个高频元素【数组 哈希表 分治 桶排序 计数 快速选择 排序 堆(优先队列)】

  • 题目描述:
  • 解题思路一:哈希表记录出现次数,然后用最小堆取,因为每次都是弹出最小的,剩下的一定是K个最大的。
  • 解题思路二:直接排序
  • 解题思路三:堆
  • 解题思路三:快速排序

题目描述:

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
示例 2:

输入: nums = [1], k = 1
输出: [1]

提示:

1 <= nums.length <= 105
k 的取值范围是 [1, 数组中不相同的元素的个数]
题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的

进阶:你所设计算法的时间复杂度 必须 优于 O(n log n) ,其中 n 是数组大小。

解题思路一:哈希表记录出现次数,然后用最小堆取,因为每次都是弹出最小的,剩下的一定是K个最大的。

import heapq # 默认是最小堆
class Solution:def topKFrequent(self, nums: List[int], k: int) -> List[int]:map_ = {}for i in range(len(nums)):map_[nums[i]] = map_.get(nums[i], 0) + 1pri_que = []for key, freq in map_.items():heapq.heappush(pri_que, (freq, key))if len(pri_que) > k: heapq.heappop(pri_que)result = [0] * kfor i in range(k-1, -1, -1):result[i] = heapq.heappop(pri_que)[1]return result

时间复杂度:O(nlogk)
空间复杂度:O(n)

解题思路二:直接排序

class Solution:def topKFrequent(self, nums: List[int], k: int) -> List[int]:count = collections.Counter(nums)return [item[0] for item in count.most_common(k)]

时间复杂度:O(nlogn)
空间复杂度:O(n)

解题思路三:堆

class Solution:def topKFrequent(self, nums: List[int], k: int) -> List[int]:count = collections.Counter(nums)heap = [(val, key) for key, val in count.items()]return [item[1] for item in heapq.nlargest(k, heap)]

时间复杂度:O(nlogn)
空间复杂度:O(n)

解题思路三:快速排序

在这里插入图片描述

class Solution:def topKFrequent(self, nums: List[int], k: int) -> List[int]:count = collections.Counter(nums)num_cnt = list(count.items())topKs = self.findTopK(num_cnt, k, 0, len(num_cnt) - 1)return [item[0] for item in topKs]def findTopK(self, num_cnt, k, low, high):pivot = random.randint(low, high)num_cnt[low], num_cnt[pivot] = num_cnt[pivot], num_cnt[low]base = num_cnt[low][1]i = lowfor j in range(low + 1, high + 1):if num_cnt[j][1] > base:num_cnt[i + 1], num_cnt[j] = num_cnt[j], num_cnt[i + 1]i += 1num_cnt[low], num_cnt[i] = num_cnt[i], num_cnt[low]if i == k - 1:return num_cnt[:k]elif i > k - 1:return self.findTopK(num_cnt, k, low, i - 1)else:return self.findTopK(num_cnt, k, i + 1, high)

时间复杂度:O(n)
空间复杂度:O(n)

相关文章:

LeetCode-347. 前 K 个高频元素【数组 哈希表 分治 桶排序 计数 快速选择 排序 堆(优先队列)】

LeetCode-347. 前 K 个高频元素【数组 哈希表 分治 桶排序 计数 快速选择 排序 堆&#xff08;优先队列&#xff09;】 题目描述&#xff1a;解题思路一&#xff1a;哈希表记录出现次数&#xff0c;然后用最小堆取&#xff0c;因为每次都是弹出最小的&#xff0c;剩下的一定是K…...

K8S Deployment HA

文章目录 K8S Deployment HA1.机器规划2.前期准备2.1 安装ansible2.2 修改 hostname2.3 配置免密2.4 时间同步2.5 系统参数调整2.6 安装 Docker2.7 部署 HaproxyKeepalived 3. 部署 K8S3.1 安装 k8s命令3.2 k8s初始化3.3 添加其他master节点3.4 添加 Node节点3.5 安装 CNI3.6 查…...

【Linux】linux 在指定根目录下,查找wav文件并删除

要在Linux的指定根目录下查找.wav文件并删除它们&#xff0c;您可以使用find命令结合-exec选项来执行删除操作。请注意&#xff0c;这个操作是不可逆的&#xff0c;所以在执行之前请确保您知道自己在做什么&#xff0c;并且已经备份了重要数据。 以下是一个示例命令&#xff0…...

三、SpringBoot3 整合 SpringMVC

本章概要 实现过程web 相关配置静态资源处理自定义拦截器(SpringMVC 配置) 3.1 实现过程 创建程序引入依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www…...

设计模式之解释器模式(上)

解释器模式 1&#xff09;概述 1.定义 定义一个语言的文法&#xff0c;并且建立一个解释器来解释该语言中的句子&#xff0c;这里的“语言”是指使用规定格式和语法的代码。 2.结构图 3.角色 AbstractExpression&#xff08;抽象表达式&#xff09;&#xff1a;在抽象表达…...

[23年蓝桥杯] 买二赠一

题目描述 【问题描述】 某商场有 N 件商品&#xff0c;其中第 i 件的价格是 A i 。现在该商场正在进行 “ 买二 赠一” 的优惠活动&#xff0c;具体规则是&#xff1a; 每购买 2 件商品&#xff0c;假设其中较便宜的价格是 P &#xff08;如果两件商品价格一样&#xff0c; 则…...

PgSQL的with as语法

returning 返回的这一些字段&#xff0c;然后进行汇总为remove_alarms 然后select一下remove_alarms 出来的数据然后保存到tb_alarm_his 里面 with remove_alarms as( delete fromtb_alarm whereid in (508) returning 0,now(),admin,alarmadvice,alarmadvicecn,alarmarises…...

六、c++代码中的安全风险-fopen

(misc) fopen: Check when opening files - can an attacker redirect it (via symlinks), force the opening of special file type (e.g., device files), move things around to create a race condition, control its ancestors, or change its contents? (CWE-362). 为…...

uniapp项目问题及解决(前后端互联)

1.路由跳转的问题 uni.navigateTo&#xff08;&#xff09; 保留当前页面&#xff0c;跳转到应用内的某个页面&#xff0c;使用uni.navigateBack可以返回到原页面 uni.redirectTo&#xff08;&#xff09; 关闭当前页面&#xff0c;跳转到应用内的某个页面。 uni.reLaunch&…...

面试算法-154-搜索二维矩阵 II

题目 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。 每列的元素从上到下升序排列。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,…...

Java中Stream流介绍

Java 8引入的Stream API是Java中处理集合的一种高效方式&#xff0c;它提供了一种高级的迭代方式&#xff0c;允许你以声明式方式处理数据。Stream API可以对数据执行复杂的查询操作&#xff0c;而不需要编写冗长且复杂的循环语句。下面是一些使用Stream API的常见场景和示例&a…...

深度学习的层、算子和函数空间

目录 一、层、算子和函数空间概念 二、层&#xff08;Layers&#xff09; 三、算子&#xff08;Operators&#xff09; 3.1常见算子 3.2常见算子的性质 四、函数空间&#xff08;Function Space&#xff09; 一、层、算子和函数空间概念 层&#xff08;Layers&#xff09…...

Pillow教程11:九宫格切图的实现方法(安排!!!)

---------------Pillow教程集合--------------- Python项目18&#xff1a;使用Pillow模块&#xff0c;随机生成4位数的图片验证码 Python教程93&#xff1a;初识Pillow模块&#xff08;创建Image对象查看属性图片的保存与缩放&#xff09; Pillow教程02&#xff1a;图片的裁…...

Macos 部署自己的privateGpt(2024-0404)

Private Chatgpt 安装指引 https://docs.privategpt.dev/installation/getting-started/installation#base-requirements-to-run-privategpt 下载源码 git clone https://github.com/imartinez/privateGPT cd privateGPT安装软件 安装&#xff1a; Homebrew /bin/bash -c…...

先安装CUDA后安装Visual Studio的额外配置

VS新建项目中增加CUDA选项 以vs2019 cuda 11.3为例 关闭vs2019解压cuda的windows安装包cuda_11.3.0_465.89_win10.exe进入路径cuda_11.3.0_465.89_win10\visual_studio_integration\CUDAVisualStudioIntegration\extras\visual_studio_integration\CudaProjectVsWizards\拷贝…...

2024 蓝桥打卡Day35

20240407蓝桥杯备赛 1、学习蓝桥云课省赛冲刺课 【3-搜索算法】【4-枚举与尺度法】2、学习蓝桥云课Java省赛无忧班 【1-语言基础】3、代码练习数字反转数字反转优化算法sort排序相关String字符串相关StringBuilder字符串相关HashSet相关 1、学习蓝桥云课省赛冲刺课 【3-搜索算法…...

【Java】单例模式

单例模式是面试中常考的设计模式之一 在面试中&#xff0c;面试官常常会要求写出两种类型的单例模式并解释原理 本文中&#xff0c;将从0到1的介绍单例模式究竟是什么 文章目录 ✍一、什么是设计模式&#xff1f;✍二、单例模式是什么&#xff1f;✍三、单例模式的类型**1.饿汉…...

Linux|从 STDIN 读取 Awk 输入

简介 在之前关于 Awk 工具的系列文章中&#xff0c;主要探讨了如何从文件中读取数据。但如果你希望从标准输入&#xff08;STDIN&#xff09;中读取数据&#xff0c;又该如何操作呢&#xff1f; 在本文中&#xff0c;将介绍几个示例&#xff0c;展示如何使用 Awk 来过滤其他命令…...

关于K8S集群中maste节点r和worker节点的20道面试题

1. 什么是Kubernetes&#xff08;K8S&#xff09;&#xff1f; Kubernetes&#xff08;通常简称为K8S&#xff09;是一种开源的容器编排平台&#xff0c;用于自动化部署、扩展和管理容器化应用程序。以下是Kubernetes的一些核心特性和优势&#xff1a; 自动化部署和扩展&…...

基于 OpenHarmony HistogramComponent 柱状图开发指南

1. HistogramComponent 组件功能介绍 1.1. 功能介绍 应用开发过程&#xff0c;用鸿蒙提供的 Component 自定义柱状图效果。 HistogramComponent 组件可以更快速实现一个简单的柱状图功能。 HistogramComponent 对外提供数据源&#xff0c;修改柱状图颜色&#xff0c;间距的…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...