当前位置: 首页 > news >正文

每日OJ题_两个数组dp⑤_力扣10. 正则表达式匹配

目录

力扣10. 正则表达式匹配

解析代码


力扣10. 正则表达式匹配

10. 正则表达式匹配

难度 困难

给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 '.' 和 '*' 的正则表达式匹配。

  • '.' 匹配任意单个字符
  • '*' 匹配零个或多个前面的那一个元素

所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。

示例 1:

输入:s = "aa", p = "a"
输出:false
解释:"a" 无法匹配 "aa" 整个字符串。

示例 2:

输入:s = "aa", p = "a*"
输出:true
解释:因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。

示例 3:

输入:s = "ab", p = ".*"
输出:true
解释:".*" 表示可匹配零个或多个('*')任意字符('.')。

提示:

  • 1 <= s.length <= 20
  • 1 <= p.length <= 20
  • s 只包含从 a-z 的小写字母。
  • p 只包含从 a-z 的小写字母,以及字符 . 和 *
  • 保证每次出现字符 * 时,前面都匹配到有效的字符
class Solution {
public:bool isMatch(string s, string p) {}
};

解析代码

状态表示:

对于两个字符串之间的 dp 问题,一般的思考方式如下:

        选取第⼀个字符串的 [0, i] 区间以及第⼆个字符串的 [0, j] 区间当成研究对象,结合题目的要求来定义状态表示。然后根据两个区间上最后一个位置的字符,来进行分类讨论,从而确定状态转移方程。

dp[i][j] 表示:字符串 p 的 [0, j] 区间和字符串 s 的 [0, i] 区间是否可以匹配。


状态转移方程:

根据最后一个位置的元素,结合题目要求,分情况讨论:

  • 当 p[j] 不是特殊字符,且不与 s[i] 相等时,无法匹配。
  • 当 s[i] == p[j] 或 p[j] == '.' 的时候,此时两个字符串匹配上了当前的一个字符, 只能从 dp[i - 1][j - 1] 中看当前字符前面的两个子串是否匹配。只能继承上个状态中的匹配结果, dp[i][j] = dp[i - 1][j - 1] ;
  • b. 当 p[j] == '*' 的时候,和力扣44. 通配符匹配稍有不同的是,上道题 "*" 本身便可匹配 0 ~ n 个字符,但此题是要带着 p[j - 1] 的字符⼀起,匹配 0 ~ n 个和 p[j - 1] 相同的字符。此时,匹配策略有两种选择:
  1. 一种选择是: p[j - 1]* 匹配空字符串,直接继承状态 dp[i][j - 2] ,此时 dp[i][j] = dp[i][j - 2] ;
  2. 另一种选择是: p[j - 1]* 向前匹配 1 ~ n 个字符(与力扣44. 通配符匹配不同,此时p[j - 1]与s[i] 要相等 或者 p[j - 1] 为点),直至匹配上整个 s 串。此时相当于从 dp[k][j - 2] (0 < k <= i) 中所有匹配情况中,选择性继承可以成功的情况。此时 dp[i][j] = dp[k][j - 2] (0 < k <= i 且 s[k]~s[i] = p[j - 1]) ;

三种情况加起来,就是所有可能的匹配结果。 综上所述,状态转移方程为:

  • 当s[i] == p[j] 或 p[j] == '.' 时: dp[i][j] = dp[i][j - 1] ;
  • 当 p[j] == '*' 时,有多种情况需要讨论: dp[i][j] = dp[i][j - 2] ; dp[i][j] = dp[k][j - 1] (0 <= k <= i) ;

这个状态转移方程时间复杂度为O(N^3),要想想优化。


        优化:当发现计算一个状态的时候,需要一个循环才能搞定的时候,我们要想到去优化。优化的方向就是用一个或者两个状态来表示这一堆的状态。通常就是把它写下来,然后用数学的方式做一下等价替换:

当 p[j] == '*' 时,状态转移方程为:dp[i][j] = dp[i][j - 2] || dp[i - 1][j - 2] || dp[i - 2][j - 2] ......

        发现 i 是有规律的减小的,因此我们去看看 dp[i - 1][j] ,列出 dp[i - 1][j] = dp[i - 1][j - 1] || dp[i - 2][j - 1] || dp[i - 3][j - 1] ......

        然后就能发现, dp[i][j] 的状态转移方程里面除了第一项以外,其余的都可以用dp[i -1][j] 替代。因此优化我们的状态转移方程为: dp[i][j] = dp[i][j - 2] || dp[i - 1][j]。


初始化、填表顺序、返回值:

初始化:空串是有研究意义的,因此我们将原始 dp 表的规模多加上一行和一列,表示空串。由于 dp 数组的值设置为是否匹配,为了不与答案值混淆,我们需要将整个数组初始化为false 。由于需要用到前一行和前一列的状态,初始化第一行、第一列即可。

dp[0][0] 表示两个空串能否匹配,答案是显然的, 初始化为 true 。

第一行表示 s 是一个空串, p 串和空串只有一种匹配可能,即 p 串表示为 "任一字符+*" ,此时也相当于空串匹配上空串。所以可以遍历 p 串,把所有前导为 "任一字符+*" 的 p 子串和空串的 dp 值设为 true 。

第一列表示 p 是一个空串,不可能匹配上 s 串,跟随数组初始化成false即可。

填表顺序:从上往下填写每一行,每一行从左往右,最后返回dp[m][n]。

class Solution {
public:bool isMatch(string s, string p) {// dp[i][j]表示字符串p的[0, j]区间和字符串s的[0, i]区间是否可以匹配int m = s.size(), n = p.size();s = " " + s, p = " " + p;vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false));dp[0][0] = true;for(int j = 2; j <= n; j += 2){if(p[j] == '*')dp[0][j] = true;elsebreak;}for(int i = 1; i <= m; ++i){for(int j = 1; j <= n; ++j){if(s[i] == p[j] || p[j] == '.'){dp[i][j] = dp[i - 1][j - 1];}else if(p[j] == '*'){   // j-1为点 或者 和s[i]相等才可以匹配dp[i - 1][j]if(p[j - 1] == '.' || p[j - 1] == s[i])dp[i][j] = dp[i][j - 2] || dp[i - 1][j];else // 匹配空串的dp[i][j] = dp[i][j - 2];}}}return dp[m][n];}
};

相关文章:

每日OJ题_两个数组dp⑤_力扣10. 正则表达式匹配

目录 力扣10. 正则表达式匹配 解析代码 力扣10. 正则表达式匹配 10. 正则表达式匹配 难度 困难 给你一个字符串 s 和一个字符规律 p&#xff0c;请你来实现一个支持 . 和 * 的正则表达式匹配。 . 匹配任意单个字符* 匹配零个或多个前面的那一个元素 所谓匹配&#xff0c…...

开源区块链系统/技术 总结(欢迎补充,最新)

一、联盟链 1. FISCO BCOS FISCO BCOS 2.0 技术文档 — FISCO BCOS 2.0 v2.9.0 文档https://fisco-bcos-documentation.readthedocs.io/ 2. ChainMaker&#xff08;长安链&#xff09; 文档导航 — chainmaker-docs v2.3.2 documentationhttps://docs.chainmaker.org.cn/v2…...

LeetCode 994—— 腐烂的橘子

阅读目录 1. 题目2. 解题思路3. 代码实现 1. 题目 2. 解题思路 1.记录下初始新鲜橘子的位置到 notRotting&#xff0c;我们按照行把二维数组拉成一维&#xff0c;所以&#xff0c;一个vector 就可以实现了&#xff1b;2.如果没有新鲜橘子&#xff0c;那么第 0 分钟所有橘子已经…...

向上向下采样

在数字图像处理中&#xff0c;向上采样&#xff08;upsampling&#xff09;和向下采样&#xff08;downsampling&#xff09;是两种常见的操作&#xff0c;用于改变图像的分辨率。 向上采样&#xff08;Upsampling&#xff09;&#xff1a; 向上采样是指增加图像的分辨率&…...

Leetcode面试经典150_Q169多数元素

题目&#xff1a; 给定一个大小为 n 的数组 nums &#xff0c;返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊n/2⌋ 的元素。 你可以假设数组是非空的&#xff0c;并且给定的数组总是存在多数元素。 解题思路&#xff1a; 1. 注意“大于 ⌊n/2⌋”&#xff0c;…...

Spring Cloud微服务入门(五)

Sentinel的安装与使用 安装部署Sentinel 下载Sentinel&#xff1a; https://github.com/alibaba/Sentinel/releases Sentinel控制台 https://localhost:8080 用户和密码为sentinel 使用Sentinel 加依赖&#xff1a; 写配置&#xff1a; 输入&#xff1a; java -Dserver.po…...

负荷预测 | Matlab基于TCN-GRU-Attention单输入单输出时间序列多步预测

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于TCN-GRU-Attention单输入单输出时间序列多步预测&#xff1b; 2.单变量时间序列数据集&#xff0c;采用前12个时刻预测未来96个时刻的数据&#xff1b; 3.excel数据方便替换&#xff0c;运行环境matlab20…...

SpringBoot整合Spring Data JPA

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉🍎个人主页:Leo的博客💞当前专栏: 循序渐进学SpringBoot ✨特色专栏: MySQL学习 🥭本文内容: SpringBoot整合Spring Data JPA 📚个人知识库: Leo知识库,欢迎大家访问 1.…...

机器学习(五) -- 监督学习(2) -- k近邻

系列文章目录及链接 目录 前言 一、K近邻通俗理解及定义 二、原理理解及公式 1、距离度量 四、接口实现 1、鸢尾花数据集介绍 2、API 3、流程 3.1、获取数据 3.2、数据预处理 3.3、特征工程 3.4、knn模型训练 3.5、模型评估 3.6、结果预测 4、超参数搜索-网格搜…...

【.NET全栈】ZedGraph图表库的介绍和应用

文章目录 一、ZedGraph介绍ZedGraph的特点ZedGraph的缺点使用注意事项 二、ZedGraph官网三、ZedGraph的应用四、ZedGraph的高端应用五、、总结 一、ZedGraph介绍 ZedGraph 是一个用于绘制图表和图形的开源.NET图表库。它提供了丰富的功能和灵活性&#xff0c;可以用于创建各种…...

vivado 设计调试

设计调试 对 FPGA 或 ACAP 设计进行调试是一个多步骤迭代式流程。与大多数复杂问题的处理方式一样 &#xff0c; 最好先将 FPGA 或 ACAP 设计调试流程细分为多个小部分 &#xff0c; 以便集中精力使设计中的每一小部分能逐一正常运行 &#xff0c; 而不是尝试一次性让整 个…...

Python3 replace()函数使用详解:字符串的艺术转换

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …...

【C++】用红黑树封装map和set

我们之前学的map和set在stl源码中都是用红黑树封装实现的&#xff0c;当然&#xff0c;我们也可以模拟来实现一下。在实现之前&#xff0c;我们也可以看一下stl源码是如何实现的。我们上篇博客写的红黑树里面只是一个pair对象&#xff0c;这对于set来说显然是不合适的&#xff…...

一些好玩的东西

这里写目录标题 递归1.递归打印数组和链表?代码实现原理讲解二叉树的 前 中 后 序位置 参考文章 递归 1.递归打印数组和链表? 平常我们打印数组和链表都是 迭代 就好了今天学到一个新思路–>不仅可以轻松正着打印数组和链表 , 还能轻松倒着打印(用的是二叉树的前中后序遍…...

微电网优化:基于巨型犰狳优化算法(Giant Armadillo Optimization,GAO)的微电网优化(提供MATLAB代码)

一、微电网优化模型 微电网是一个相对独立的本地化电力单元&#xff0c;用户现场的分布式发电可以支持用电需求。为此&#xff0c;您的微电网将接入、监控、预测和控制您本地的分布式能源系统&#xff0c;同时强化供电系统的弹性&#xff0c;保障您的用电更经济。您可以在连接…...

java锁

乐观锁 乐观锁是一种乐观思想&#xff0c;即认为读多写少&#xff0c;遇到并发写的可能性低&#xff0c;每次去拿数据的时候都认为别人不会修改&#xff0c;所以不会上锁&#xff0c;但是在更新的时候会判断一下在此期间别人有没有去更新这个数据&#xff0c;采取在写时先读出…...

QA测试开发工程师面试题满分问答6: 如何判断接口功能正常?从QA的角度设计测试用例

判断接口功能是否正常的方法之一是设计并执行相关的测试用例。下面是从测试QA的角度设计接口测试用例的一些建议,包括功能、边界、异常、链路、上下游和并发等方面: 通过综合考虑这些测试维度,并设计相应的测试用例,可以更全面地评估接口的功能、性能、安全性、数据一致…...

vue 双向绑定

双向绑定&#xff1a;双方其中一方改变&#xff0c;另外一方也会跟着改变。 data() { return {inputValue: ,list: [],message: hello,checked: true,radio: ,select: [],options: [{text: A, value:{value: A}},{text: B, value:{value: B}},{text: C, value:{value: C}}], }…...

python--异常处理

异常处理 例一&#xff1a; try: #可能出现异常代码 except&#xff1a; #如果程序异常&#xff0c;则立刻进入这儿 [finally: #不管是否捕获异常&#xff0c;finally语法快必须要执行&#xff01;&#xff01;&#xff01; #资源关闭&#xff0c;等各种非常重要的操作&…...

element-ui result 组件源码分享

今日简单分享 result 组件的源码实现&#xff0c;主要从以下三个方面&#xff1a; 1、result 组件页面结构 2、result 组件属性 3、result 组件 slot 一、result 组件页面结构 二、result 组件属性 2.1 title 属性&#xff0c;标题&#xff0c;类型 string&#xff0c;无默…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

用递归算法解锁「子集」问题 —— LeetCode 78题解析

文章目录 一、题目介绍二、递归思路详解&#xff1a;从决策树开始理解三、解法一&#xff1a;二叉决策树 DFS四、解法二&#xff1a;组合式回溯写法&#xff08;推荐&#xff09;五、解法对比 递归算法是编程中一种非常强大且常见的思想&#xff0c;它能够优雅地解决很多复杂的…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...