每日OJ题_两个数组dp⑤_力扣10. 正则表达式匹配
目录
力扣10. 正则表达式匹配
解析代码
力扣10. 正则表达式匹配
10. 正则表达式匹配
难度 困难
给你一个字符串 s
和一个字符规律 p
,请你来实现一个支持 '.'
和 '*'
的正则表达式匹配。
'.'
匹配任意单个字符'*'
匹配零个或多个前面的那一个元素
所谓匹配,是要涵盖 整个 字符串 s
的,而不是部分字符串。
示例 1:
输入:s = "aa", p = "a" 输出:false 解释:"a" 无法匹配 "aa" 整个字符串。
示例 2:
输入:s = "aa", p = "a*" 输出:true 解释:因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。
示例 3:
输入:s = "ab", p = ".*" 输出:true 解释:".*" 表示可匹配零个或多个('*')任意字符('.')。
提示:
1 <= s.length <= 20
1 <= p.length <= 20
s
只包含从a-z
的小写字母。p
只包含从a-z
的小写字母,以及字符.
和*
。- 保证每次出现字符
*
时,前面都匹配到有效的字符
class Solution {
public:bool isMatch(string s, string p) {}
};
解析代码
状态表示:
对于两个字符串之间的 dp 问题,一般的思考方式如下:
选取第⼀个字符串的 [0, i] 区间以及第⼆个字符串的 [0, j] 区间当成研究对象,结合题目的要求来定义状态表示。然后根据两个区间上最后一个位置的字符,来进行分类讨论,从而确定状态转移方程。
dp[i][j] 表示:字符串 p 的 [0, j] 区间和字符串 s 的 [0, i] 区间是否可以匹配。
状态转移方程:
根据最后一个位置的元素,结合题目要求,分情况讨论:
- 当 p[j] 不是特殊字符,且不与 s[i] 相等时,无法匹配。
- 当 s[i] == p[j] 或 p[j] == '.' 的时候,此时两个字符串匹配上了当前的一个字符, 只能从 dp[i - 1][j - 1] 中看当前字符前面的两个子串是否匹配。只能继承上个状态中的匹配结果, dp[i][j] = dp[i - 1][j - 1] ;
- b. 当 p[j] == '*' 的时候,和力扣44. 通配符匹配稍有不同的是,上道题 "*" 本身便可匹配 0 ~ n 个字符,但此题是要带着 p[j - 1] 的字符⼀起,匹配 0 ~ n 个和 p[j - 1] 相同的字符。此时,匹配策略有两种选择:
- 一种选择是: p[j - 1]* 匹配空字符串,直接继承状态 dp[i][j - 2] ,此时 dp[i][j] = dp[i][j - 2] ;
- 另一种选择是: p[j - 1]* 向前匹配 1 ~ n 个字符(与力扣44. 通配符匹配不同,此时p[j - 1]与s[i] 要相等 或者 p[j - 1] 为点),直至匹配上整个 s 串。此时相当于从 dp[k][j - 2] (0 < k <= i) 中所有匹配情况中,选择性继承可以成功的情况。此时 dp[i][j] = dp[k][j - 2] (0 < k <= i 且 s[k]~s[i] = p[j - 1]) ;
三种情况加起来,就是所有可能的匹配结果。 综上所述,状态转移方程为:
- 当s[i] == p[j] 或 p[j] == '.' 时: dp[i][j] = dp[i][j - 1] ;
- 当 p[j] == '*' 时,有多种情况需要讨论: dp[i][j] = dp[i][j - 2] ; dp[i][j] = dp[k][j - 1] (0 <= k <= i) ;
这个状态转移方程时间复杂度为O(N^3),要想想优化。
优化:当发现计算一个状态的时候,需要一个循环才能搞定的时候,我们要想到去优化。优化的方向就是用一个或者两个状态来表示这一堆的状态。通常就是把它写下来,然后用数学的方式做一下等价替换:
当 p[j] == '*' 时,状态转移方程为:dp[i][j] = dp[i][j - 2] || dp[i - 1][j - 2] || dp[i - 2][j - 2] ......
发现 i 是有规律的减小的,因此我们去看看 dp[i - 1][j] ,列出 dp[i - 1][j] = dp[i - 1][j - 1] || dp[i - 2][j - 1] || dp[i - 3][j - 1] ......
然后就能发现, dp[i][j] 的状态转移方程里面除了第一项以外,其余的都可以用dp[i -1][j] 替代。因此优化我们的状态转移方程为: dp[i][j] = dp[i][j - 2] || dp[i - 1][j]。
初始化、填表顺序、返回值:
初始化:空串是有研究意义的,因此我们将原始 dp 表的规模多加上一行和一列,表示空串。由于 dp 数组的值设置为是否匹配,为了不与答案值混淆,我们需要将整个数组初始化为false 。由于需要用到前一行和前一列的状态,初始化第一行、第一列即可。
dp[0][0] 表示两个空串能否匹配,答案是显然的, 初始化为 true 。
第一行表示 s 是一个空串, p 串和空串只有一种匹配可能,即 p 串表示为 "任一字符+*" ,此时也相当于空串匹配上空串。所以可以遍历 p 串,把所有前导为 "任一字符+*" 的 p 子串和空串的 dp 值设为 true 。
第一列表示 p 是一个空串,不可能匹配上 s 串,跟随数组初始化成false即可。
填表顺序:从上往下填写每一行,每一行从左往右,最后返回dp[m][n]。
class Solution {
public:bool isMatch(string s, string p) {// dp[i][j]表示字符串p的[0, j]区间和字符串s的[0, i]区间是否可以匹配int m = s.size(), n = p.size();s = " " + s, p = " " + p;vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false));dp[0][0] = true;for(int j = 2; j <= n; j += 2){if(p[j] == '*')dp[0][j] = true;elsebreak;}for(int i = 1; i <= m; ++i){for(int j = 1; j <= n; ++j){if(s[i] == p[j] || p[j] == '.'){dp[i][j] = dp[i - 1][j - 1];}else if(p[j] == '*'){ // j-1为点 或者 和s[i]相等才可以匹配dp[i - 1][j]if(p[j - 1] == '.' || p[j - 1] == s[i])dp[i][j] = dp[i][j - 2] || dp[i - 1][j];else // 匹配空串的dp[i][j] = dp[i][j - 2];}}}return dp[m][n];}
};
相关文章:

每日OJ题_两个数组dp⑤_力扣10. 正则表达式匹配
目录 力扣10. 正则表达式匹配 解析代码 力扣10. 正则表达式匹配 10. 正则表达式匹配 难度 困难 给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 . 和 * 的正则表达式匹配。 . 匹配任意单个字符* 匹配零个或多个前面的那一个元素 所谓匹配,…...

开源区块链系统/技术 总结(欢迎补充,最新)
一、联盟链 1. FISCO BCOS FISCO BCOS 2.0 技术文档 — FISCO BCOS 2.0 v2.9.0 文档https://fisco-bcos-documentation.readthedocs.io/ 2. ChainMaker(长安链) 文档导航 — chainmaker-docs v2.3.2 documentationhttps://docs.chainmaker.org.cn/v2…...

LeetCode 994—— 腐烂的橘子
阅读目录 1. 题目2. 解题思路3. 代码实现 1. 题目 2. 解题思路 1.记录下初始新鲜橘子的位置到 notRotting,我们按照行把二维数组拉成一维,所以,一个vector 就可以实现了;2.如果没有新鲜橘子,那么第 0 分钟所有橘子已经…...
向上向下采样
在数字图像处理中,向上采样(upsampling)和向下采样(downsampling)是两种常见的操作,用于改变图像的分辨率。 向上采样(Upsampling): 向上采样是指增加图像的分辨率&…...
Leetcode面试经典150_Q169多数元素
题目: 给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊n/2⌋ 的元素。 你可以假设数组是非空的,并且给定的数组总是存在多数元素。 解题思路: 1. 注意“大于 ⌊n/2⌋”,…...

Spring Cloud微服务入门(五)
Sentinel的安装与使用 安装部署Sentinel 下载Sentinel: https://github.com/alibaba/Sentinel/releases Sentinel控制台 https://localhost:8080 用户和密码为sentinel 使用Sentinel 加依赖: 写配置: 输入: java -Dserver.po…...

负荷预测 | Matlab基于TCN-GRU-Attention单输入单输出时间序列多步预测
目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于TCN-GRU-Attention单输入单输出时间序列多步预测; 2.单变量时间序列数据集,采用前12个时刻预测未来96个时刻的数据; 3.excel数据方便替换,运行环境matlab20…...

SpringBoot整合Spring Data JPA
✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉🍎个人主页:Leo的博客💞当前专栏: 循序渐进学SpringBoot ✨特色专栏: MySQL学习 🥭本文内容: SpringBoot整合Spring Data JPA 📚个人知识库: Leo知识库,欢迎大家访问 1.…...

机器学习(五) -- 监督学习(2) -- k近邻
系列文章目录及链接 目录 前言 一、K近邻通俗理解及定义 二、原理理解及公式 1、距离度量 四、接口实现 1、鸢尾花数据集介绍 2、API 3、流程 3.1、获取数据 3.2、数据预处理 3.3、特征工程 3.4、knn模型训练 3.5、模型评估 3.6、结果预测 4、超参数搜索-网格搜…...

【.NET全栈】ZedGraph图表库的介绍和应用
文章目录 一、ZedGraph介绍ZedGraph的特点ZedGraph的缺点使用注意事项 二、ZedGraph官网三、ZedGraph的应用四、ZedGraph的高端应用五、、总结 一、ZedGraph介绍 ZedGraph 是一个用于绘制图表和图形的开源.NET图表库。它提供了丰富的功能和灵活性,可以用于创建各种…...
vivado 设计调试
设计调试 对 FPGA 或 ACAP 设计进行调试是一个多步骤迭代式流程。与大多数复杂问题的处理方式一样 , 最好先将 FPGA 或 ACAP 设计调试流程细分为多个小部分 , 以便集中精力使设计中的每一小部分能逐一正常运行 , 而不是尝试一次性让整 个…...

Python3 replace()函数使用详解:字符串的艺术转换
博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …...

【C++】用红黑树封装map和set
我们之前学的map和set在stl源码中都是用红黑树封装实现的,当然,我们也可以模拟来实现一下。在实现之前,我们也可以看一下stl源码是如何实现的。我们上篇博客写的红黑树里面只是一个pair对象,这对于set来说显然是不合适的ÿ…...

一些好玩的东西
这里写目录标题 递归1.递归打印数组和链表?代码实现原理讲解二叉树的 前 中 后 序位置 参考文章 递归 1.递归打印数组和链表? 平常我们打印数组和链表都是 迭代 就好了今天学到一个新思路–>不仅可以轻松正着打印数组和链表 , 还能轻松倒着打印(用的是二叉树的前中后序遍…...

微电网优化:基于巨型犰狳优化算法(Giant Armadillo Optimization,GAO)的微电网优化(提供MATLAB代码)
一、微电网优化模型 微电网是一个相对独立的本地化电力单元,用户现场的分布式发电可以支持用电需求。为此,您的微电网将接入、监控、预测和控制您本地的分布式能源系统,同时强化供电系统的弹性,保障您的用电更经济。您可以在连接…...
java锁
乐观锁 乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,采取在写时先读出…...
QA测试开发工程师面试题满分问答6: 如何判断接口功能正常?从QA的角度设计测试用例
判断接口功能是否正常的方法之一是设计并执行相关的测试用例。下面是从测试QA的角度设计接口测试用例的一些建议,包括功能、边界、异常、链路、上下游和并发等方面: 通过综合考虑这些测试维度,并设计相应的测试用例,可以更全面地评估接口的功能、性能、安全性、数据一致…...
vue 双向绑定
双向绑定:双方其中一方改变,另外一方也会跟着改变。 data() { return {inputValue: ,list: [],message: hello,checked: true,radio: ,select: [],options: [{text: A, value:{value: A}},{text: B, value:{value: B}},{text: C, value:{value: C}}], }…...
python--异常处理
异常处理 例一: try: #可能出现异常代码 except: #如果程序异常,则立刻进入这儿 [finally: #不管是否捕获异常,finally语法快必须要执行!!! #资源关闭,等各种非常重要的操作&…...

element-ui result 组件源码分享
今日简单分享 result 组件的源码实现,主要从以下三个方面: 1、result 组件页面结构 2、result 组件属性 3、result 组件 slot 一、result 组件页面结构 二、result 组件属性 2.1 title 属性,标题,类型 string,无默…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...

mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...

nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
WEB3全栈开发——面试专业技能点P7前端与链上集成
一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染(SSR)与静态网站生成(SSG) 框架,由 Vercel 开发。它简化了构建生产级 React 应用的过程,并内置了很多特性: ✅ 文件系…...

云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...
深入浅出WebGL:在浏览器中解锁3D世界的魔法钥匙
WebGL:在浏览器中解锁3D世界的魔法钥匙 引言:网页的边界正在消失 在数字化浪潮的推动下,网页早已不再是静态信息的展示窗口。如今,我们可以在浏览器中体验逼真的3D游戏、交互式数据可视化、虚拟实验室,甚至沉浸式的V…...

Mac flutter环境搭建
一、下载flutter sdk 制作 Android 应用 | Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 1、查看mac电脑处理器选择sdk 2、解压 unzip ~/Downloads/flutter_macos_arm64_3.32.2-stable.zip \ -d ~/development/ 3、添加环境变量 命令行打开配置环境变量文件 ope…...
python打卡第47天
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...