Python学习笔记(三)
一、使用朴素贝叶斯制作鸢尾花数据模型
from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import MultinomialNB
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizerif __name__ == '__main__':ir = load_iris()features = ir.datatargets = ir.target# print(features[:20])# 分割数据集x_train, x_test, y_train, y_test = train_test_split(features, targets, train_size=0.8, random_state=100)# 数据量之间差距过大,需要预处理下stdobj = StandardScaler()stdobj.fit(x_train)x_train = stdobj.transform(x_train)x_test = stdobj.transform(x_test)# 进行特征提取countobj = CountVectorizer()countobj.fit(x_train)# countobjx_train = countobj.transform(x_train)x_test = countobj.transform(x_test)# print(x_train[:20])# 拟合朴素贝叶斯模型estimate = MultinomialNB()estimate.fit(x_train, y_train)model_score = estimate.score(x_test, y_test)print(model_score)resault=estimate.predict(x_test[0])print(f"{ir.feature_names[resault]}")
二、使用__new__()方法可以制作单例模式,因为__new__()方法是在实例化对象时调用的第一个方法,可以控制对象的创建过程。在__new__()方法中,我们可以判断是否已经创建了实例,如果已经创建了实例,则返回已有的实例,否则创建一个新的实例。这样就可以保证在整个程序中只有一个实例存在。同时,由于__new__()方法是在实例化对象时调用的第一个方法,所以可以在__init__()方法中进行初始化操作,从而实现重新初始化的功能。
class Singleton(object):def __new__(cls):if not hasattr(cls, '_instance'):cls._instance = super(Singleton, cls).__new__(cls)return cls._instancea = Singleton()
b = Singleton()
c = Singleton()print(a, id(a))
print(b, id(b))
print(c, id(c))
在这个示例代码中,我们定义了一个Singleton类,并在其中实现了__new__()方法。在__new__()方法中,我们首先判断是否已经创建了实例,如果已经创建了实例,则返回已有的实例,否则创建一个新的实例。这样就可以保证在整个程序中只有一个实例存在。最后,我们创建了三个Singleton对象,并打印它们的内存地址,可以看到它们的内存地址都是相同的,说明它们都是同一个实例。另外,我们还可以在__init__()方法中进行初始化操作,从而实现重新初始化的功能。下面是一个使用__new__()方法和__init__()方法实现单例模式的示例代码:class SingletonCls:def __new__(cls, *args, **kwargs):if not hasattr(cls, "_instance"):cls._instance = super(SingletonCls, cls).__new__(cls)return cls._instancedef __init__(self, *args, **kwargs):passclass Foo(SingletonCls):def __init__(self, name):self.name = namels = Foo("ls")
print(ls.name)
zs = Foo("zs")
print(ls.name)
print(zs.name)
三、写代码,有如下字典,按照要求实现每一个功能
dic={‘k1’:’v1’,’k2’:[‘alex’,’sb’],(1,2,3,4,5):{‘k3’:[‘2’,100,’wer’]}}
- 1、将’k2’对应的值的最后面添加一个元素’23’;
- 2、将’k2’对应的值的第一个位置插入一个元素’a’;
- 3、将(1,2,3,4,5)对应的值添加一个键值对’k4’,’v4’;
- 4、将(1,2,3,4,5)对应的值添加一个键值对(1,2,3),’ok’;
- 5、将’k3’对应的值的’wer’更改为’qq’;
if __name__ == '__main__':dic = {'k1':'v1', 'k2':['alex', 'sb'], (1, 2, 3, 4, 5): {'k3':['2', 100,'wer']}}dic['k2'].append("23")dic['k2'].insert(0,'a')dic.get((1, 2, 3, 4, 5))['k4']="v4"dic.get((1, 2, 3, 4, 5))[(1,2,3)]="ok"dic.get((1, 2, 3, 4, 5)).get("k3")[2]="qq";print(dic)
四、使用__new__()方法,制作单例
class SingletonObject(object):__instance=Nonedef __new__(cls):if cls.__instance is None:cls.__instance=object.__new__(cls)return cls.__instance
if __name__ == '__main__':s1=SingletonObject()s2=SingletonObject()print(s1)print(s2)
相关文章:
Python学习笔记(三)
一、使用朴素贝叶斯制作鸢尾花数据模型 from sklearn.preprocessing import StandardScaler from sklearn.naive_bayes import MultinomialNB from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.feature_extraction…...
Python办公自动化之Excel做表自动化:全网最全,看这一篇就够了!
0 Python Excel库对比 我们先来看一下python中能操作Excel的库对比(一共九个库): 1 Python xlrd 读取 操作Excel 1.1 xlrd模块介绍 (1)什么是xlrd模块? python操作excel主要用到xlrd和xlwt这两个库&…...
【学习笔记】R语言入门与数据分析1
数据分析 数据分析的过程: 数据采集 数据存储 数据分析 数据挖掘 数据可视化 进行决策 数据挖掘 数据量大 复杂度高,容忍一定的误差限 追求相关性而非因果性 数据可视化 直观明了 R语言介绍 R是免费的(开源软件、扩展性好)…...
MyBatis-Spring整合
引入Spring之前需要了解mybatis-spring包中的一些重要类; http://www.mybatis.org/spring/zh/index.html 什么是 MyBatis-Spring? MyBatis-Spring 会帮助你将 MyBatis 代码无缝地整合到 Spring 中。 知识基础 在开始使用 MyBatis-Spring 之前&#x…...
资深亚马逊运营实战技巧:跨境电商6大选品法
1、工具选品法 比如店雷达, 通过大数据分析工具选出来利基产品或者通过工具选出来利基的市场,然后再通过分析市场来得到产品。 以女装为例,通过大数据分析,全方位对市场需求、款式、质量等进行多维度判断,其中SKU销量…...
bugku-web-需要管理员
页面源码 <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetUTF-8"> <title>404 Not Found</title> </head> <body> <div idmain><i> <h2>Something error:</h2…...
STM32之FreeRTOS移植
1.FreeRTOS的移植过程是将系统需要的文件和代码进行移植和裁剪,其移植的主要过程为: (1)官网上下载FreeRTOS源码:https://www.freertos.org/ (2)移植文件夹,在portable文件夹中只需…...
SpringBoot实用开发(十四)-- 消息(Message)的简单认识
目录 1.消息的概念 2.Java处理消息的标准规范 3.JMS 4.AMQP 5.MQTT 1.消息的概念 广义角度来说,消息其实就是信息,但是和信息又有所不同。信息通常被定义为一组数据,而消息除了具有数据的特征之外,还有...
【Spring Boot 源码学习】SpringApplication 的 run 方法核心流程介绍
《Spring Boot 源码学习系列》 SpringApplication 的 run 方法核心流程介绍 一、引言二、往期内容三、主要内容3.1 run 方法源码初识3.2 引导上下文 BootstrapContext3.3 系统属性【java.awt.headless】3.4 早期启动阶段3.5 准备和配置应用环境3.6 打印 Banner 信息3.7 新建应用…...
如何保证消息不丢失?——使用rabbitmq的死信队列!
如何保证消息不丢失?——使用rabbitmq的死信队列! 1、什么是死信 在 RabbitMQ 中充当主角的就是消息,在不同场景下,消息会有不同地表现。 死信就是消息在特定场景下的一种表现形式,这些场景包括: 消息被拒绝访问&am…...
html、css、京东移动端静态页面,资源免费分享,可作为参考,提供InsCode在线运行演示
CSDN将我上传的免费资源私自变成VIP专享资源,且作为作者的我不可修改为免费资源,不可删除,寻找客服无果,很愤怒,(我发布免费资源就是希望大家能免费一起用、一起学习),接下来继续寻找…...
头歌-机器学习 第13次实验 特征工程——共享单车之租赁需求预估
第1关:数据探索与可视化 任务描述 本关任务:编写python代码,完成一天中不同时间段的平均租赁数量的可视化功能。 相关知识 为了完成本关任务,你需要掌握: 读取数据数据探索与可视化 读取数据 数据保存在./step1/…...
Unity 2D让相机跟随角色移动
相机跟随移动 最简单的方式通过插件Cinemachine 在窗口/包管理器选择全部找到Cinemachine,导入。然后在游戏对象/Cinemachine创建2D Camera。此时层级中创建一个2D相机。选中人物拖入检查器Follow。此时相机跟随人物移动。 修改相机视口距离 在检查器中Lens下调正…...
【面试题】s += 1 和 s = s + 1的区别
文章目录 1.问题2.发现过程3.解析 1.问题 以下两个程序真的完全等同吗? short s 0; s 1; short s 0; s s 1; 2.发现过程 初看s 1 和 s s 1好像是等价的,没有什么区别。很长一段时间内我也是这么觉得,因为当时学习c语言的时候教科书…...
ARM的学习
点亮流水灯 .text .global _start _start: 使能GPIOE的外设时钟 RCC_MP_AHB4ENSETR 0x50000a28 [4]->1LDR R0,0X50000A28 指定基地址LDR R1,[R0] 将寄存器数据读取出来保存到R1中ORR R1,R1,#(0x3<<4) [4]设置为1ORR R1,R1,#(0x3<<5) [5]设置为1STR …...
Restful API接口规范(以Django为例)
Restful API接口规范(以Django为例) Restful API的接口架构风格中制定了一些规范,极大的简化了前后端对接的时间,以及增加了开发效率 安全性保证–使用https路径中带 api标识路径中带版本号数据即资源,通常使用名词操作请求方式决定操作资源…...
AI助力,程序员压力倍增?
讲动人的故事,写懂人的代码 你知道程序员现在在AI辅助编程时最头疼的事情是什么吗?就是怎么在改代码的时候保住小命。 大家都听过程序员因为工作太累导致过劳湿的事情。 无论是写新功能、修bug,还是更改系统配置,都得改代码。 现在有了AI的帮助,本应该轻松很多,为什么…...
LoRA微调
论文:LoRA: Low-Rank Adaptation of Large Language Models 实现:microsoft/LoRA: Code for loralib, an implementation of “LoRA: Low-Rank Adaptation of Large Language Models” (github.com) 摘要 自然语言处理的一个重要的开发范式包括&#…...
45.基于SpringBoot + Vue实现的前后端分离-驾校预约学习系统(项目 + 论文)
项目介绍 本站是一个B/S模式系统,采用SpringBoot Vue框架,MYSQL数据库设计开发,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得基于SpringBoot Vue技术的驾校预约学习系统设计与实现管理工作…...
系统思考—时间滞延
“没有足够的时间是所有管理问题的一部分。”——彼得德鲁克 鱼和熊掌可以兼得,但并不能同时获得。在提出系统解决方案时,我们必须认识到并考虑到解决方案的实施通常会有必要的时间滞延。这种延迟有时比我们预想的要长得多,特别是当方案涉及…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
从零开始了解数据采集(二十八)——制造业数字孪生
近年来,我国的工业领域正经历一场前所未有的数字化变革,从“双碳目标”到工业互联网平台的推广,国家政策和市场需求共同推动了制造业的升级。在这场变革中,数字孪生技术成为备受关注的关键工具,它不仅让企业“看见”设…...
[特殊字符] 手撸 Redis 互斥锁那些坑
📖 手撸 Redis 互斥锁那些坑 最近搞业务遇到高并发下同一个 key 的互斥操作,想实现分布式环境下的互斥锁。于是私下顺手手撸了个基于 Redis 的简单互斥锁,也顺便跟 Redisson 的 RLock 机制对比了下,记录一波,别踩我踩过…...
Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合
无论是python,或者java 的大型项目中,都会涉及到 自身平台微服务之间的相互调用,以及和第三发平台的 接口对接,那在python 中是怎么实现的呢? 在 Python Web 开发中,FastAPI 和 Django 是两个重要但定位不…...
JavaScript性能优化实战大纲
性能优化的核心目标 降低页面加载时间,减少内存占用,提高代码执行效率,确保流畅的用户体验。 代码层面的优化 减少全局变量使用,避免内存泄漏 // 不好的实践 var globalVar I am global;// 好的实践 (function() {var localV…...
调试快捷键 pycharm vscode
目录 调试快捷键 pycharm vscode 修改快捷键 方法 1:通过菜单打开 方法 2:用快捷键打开 调试快捷键 pycharm Resume Program F9 Step Over F8 两个离的比较近,比较方便,比vscode的好。 vscode Continue F5 改为F9 S…...
python打卡第48天
知识点回顾: 随机张量的生成:torch.randn函数卷积和池化的计算公式(可以不掌握,会自动计算的)pytorch的广播机制:加法和乘法的广播机制 ps:numpy运算也有类似的广播机制,基本一致 **…...
