hot100 -- 链表(中)
不要觉得力扣核心代码模式麻烦,它确实比不上ACM模式舒服,可以自己处理输入输出
只是你对 链表 和 return 的理解不到位
👂 ▶ 屿前世 (163.com)
👂 ▶ see you tomorrow (163.com)
目录
🎂两数相加
🚩删除链表倒数第 N 个节点
AC 双指针
AC 栈
AC 计算链表长度
🌼两两交换链表中的节点
AC 递归
AC 迭代
🌼K 个一组翻转链表
🎂两数相加
2. 两数相加 - 力扣(LeetCode)
1)l1, l2 长度可能不一样,假设短的后面全是 0,通过三目运算符得到 当前节点的值,比如
n1 = l1 ? l1->val : 02)sum = n1 + n2 + 进位,%10 当前位,/10 进位
3)注意给节点赋值方式
tail->next = new ListNode(...);4)可能漏最后一次进位,while() 结束后还要来一次
时间 O(max(m, n)),空间 O(1)
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {ListNode *head = nullptr, *tail = nullptr;int temp = 0; // 进位while (l1 || l2) {int n1 = l1 ? l1->val : 0; // l1 的值int n2 = l2 ? l2->val : 0;int sum = n1 + n2 + temp;if (!head) // 第1次head = tail = new ListNode(sum % 10); // 注意赋值方式else {// tail 上一步已经初始化, 所以现在是 tail->nexttail->next = new ListNode(sum % 10); // 先给下一赋值tail = tail->next; // 再移动}temp = sum / 10; // 进位// l1, l2 向后移动if (l1) l1 = l1->next;if (l2) l2 = l2->next;}// 最后一次进位if (temp) tail->next = new ListNode(temp);return head; // 不返回 tail, 防止 nullptr}
};🚩删除链表倒数第 N 个节点
19. 删除链表的倒数第 N 个结点 - 力扣(LeetCode)
注意:链表的题,如果出现 Node->next,那么这个 Node 一定不为 nullptr,否则会报错
1,双指针:一前一后,前面的先移动 n 个位置,然后开始同步移动
2,栈:思路类似双指针,最终都是遍历到待删除节点前一个(从栈顶开始出栈)
3,链表长度:思路类似前面,借助哑节点,避免对删除头节点的处理,遍历两次即可
AC 双指针
时间 O(L),空间 O(1),L 链表长度
自己写的
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* removeNthFromEnd(ListNode* head, int n) {ListNode *fast = head, *slow = head;// 前后指针 -- 找到倒数第 n 个节点, 即 slowwhile (n--)fast = fast->next;// 删除头节点if (!fast) {ListNode *temp = head;head = temp->next;delete temp;return head;}while (fast->next)slow = slow->next, fast = fast->next;// 删除 slow 下一节点ListNode *bad = slow->next; // 要删除的节点slow->next = slow->next->next;bad->next = nullptr;delete bad;// 上面处理了头节点被删除的情况,所以这里可以 return headreturn head; }
};官解重写
删除倒数第 n 个节点,通过指针的 next 来操作,最后的 delete 只是为了手动释放堆区数据(自己new的自己delete)
bad 的作用是,防止删的是第一个元素,因为最终会遍历到删除节点的前一个
如果不用 bad,就像前面的代码一样,特殊处理删除节点是头节点的情况
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* removeNthFromEnd(ListNode* head, int n) {// 初始化 head 上一位置,  bad->next = headListNode *bad = new ListNode(0, head); ListNode *fast = head, *slow = bad; // slow 初始化为 badwhile (n--)fast = fast->next;while (fast) {fast = fast->next;slow = slow->next;}// 此时 slow 位于删除节点 上一位置slow->next = slow->next->next; // 更新连接ListNode *ans = bad->next; // 新的头节点delete bad;return ans; // 返回新的头节点}
};AC 栈
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* removeNthFromEnd(ListNode* head, int n) {stack<ListNode *> s;// temp 的作用是,防止删的是第一个元素,因为最终会遍历到删除节点的前一个ListNode *temp = new ListNode(0, head);ListNode *cur = temp;// 链表节点全部入栈while (cur) {s.push(cur); // push_back 是 vectorcur = cur->next;}// 弹出 n 个元素后,栈顶就是待删除节点前一个while (n--) s.pop();ListNode *prev = s.top(); prev->next = prev->next->next; // 先重新连接ListNode *ans = temp->next; // 再赋值新的头节点delete temp;return ans;}
};AC 计算链表长度
同样,类似上面两种,通过头节点前的,哑节点,避免对删除头节点这种情况的处理
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* removeNthFromEnd(ListNode* head, int n) {ListNode *temp = new ListNode(0, head); // 哑节点,避免对头节点删除的处理ListNode *cur = temp;int len = 0;// 链表长度while (cur->next) { // 长度容易错len++;cur = cur->next;}cur = temp;int count = len - n;// 哑节点移动 len - n + 1,即待删除节点// 所以,移动 len - n,刚好待删除前一个while (count--) cur = cur->next;cur->next = cur->next->next;ListNode *ans = temp->next; // 新的头节点delete temp;return ans;}
};🌼两两交换链表中的节点
24. 两两交换链表中的节点 - 力扣(LeetCode)
AC 递归
head之前的不用处理,举个例子,比如
转换后 head = swapPairs(temp->next),把两两视作一个整体,那么两两中的后一个,指向哪里,取决于后面递归的结果,所以只需考虑当前层
时间 O(n),空间 O(n)(递归栈深度 n)
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:// head 表示递归时,当前两两交换节点的前一个ListNode* swapPairs(ListNode* head) {// 递归出口if (head == nullptr || head->next == nullptr)return head; // 只剩0个 或 1个节点// 只看当前层:交换两个节点ListNode *temp = head->next; head->next = swapPairs(temp->next); // 递归交换剩余节点temp->next = head;return temp; // 返回新的头节点}
};AC 迭代
类似冒泡排序,直接交换,但是需要借助哑节点 temp,比如
temp->Node1->Node2
👇
temp->Node2->Node1
时间 O(n),空间 O(1)
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* swapPairs(ListNode* head) {ListNode *temp = new ListNode(0, head); // 初始 temp->next == headListNode *tempHead = temp; // 头节点前一个// 递归中的 head 是当前节点// 迭代中的 head 只表示原链表头节点// 所以 while 中不能用 head, 应该用 tempwhile (temp->next != nullptr && temp->next->next != nullptr) {ListNode *Node1 = temp->next;ListNode *Node2 = temp->next->next;// temp->Node1->Node2 ----> temp->Node2->Node1temp->next = Node2;Node1->next = Node2->next;Node2->next = Node1;// 新的哑节点temp = Node1;}ListNode *ans = tempHead->next; // 新链表头节点// delete tempHead; // 删除哑节点return ans; // 新的头节点}
};🌼K 个一组翻转链表
25. K 个一组翻转链表 - 力扣(LeetCode)
模拟:迭代反转 + 新建连接
以下是新建连接的 3 个步骤
k = 3 也一样
和上/下一组新建连接时,要从外层开始,就是p0->next->next到p0->next最后才是p0
p0->next->next = cur; // 下一组头 p0->next = nex; // 上一组尾 p0 = p1; // 更新p0
时间 O(n),空间 O(1)
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* reverseKGroup(ListNode* head, int k) {// 链表长度 lenint len = 0;for (ListNode *cur = head; cur; cur = cur->next)len++;// temp->next  ==  head(temp/p0 -- 哑节点/哨兵节点)ListNode *temp = new ListNode(0, head);ListNode *p0 = temp; // p0 k个一组第一个节点的前一个ListNode *nex = nullptr, *cur = head;// k 个一组反转for (; len >= k; len -= k) {// 迭代 -- 反转(参考反转链表I)// 因为哨兵节点的存在,所以是 k 次而不是 k-1 次反转for (int i = 0; i < k; ++i) { // k 次反转ListNode *pre = cur->next; // pre 右移cur->next = nex; // 反转nex = cur; // nex 右移cur = pre; // cur 右移}// 当前组 与 上一组尾&&下一组头 连接ListNode *p1 = p0->next; // 新的p0p0->next->next = cur; // 下一组头p0->next = nex; // 上一组尾p0 = p1; // 更新p0}return temp->next; // 返回新链表的头节点}
};相关文章:
 
hot100 -- 链表(中)
不要觉得力扣核心代码模式麻烦,它确实比不上ACM模式舒服,可以自己处理输入输出 只是你对 链表 和 return 的理解不到位 👂 ▶ 屿前世 (163.com) 👂 ▶ see you tomorrow (163.com) 目录 🎂两数相加 🚩删…...
数据结构面试常见问题
数据结构是计算机科学中非常重要的一部分,也是面试中经常被考察的内容。以下是一些在数据结构面试中常见的问题: 1. 数组 (Array): 描述数组和链表的区别。如何在数组中实现循环队列?给定一个数组,如何找到两个数的和等于给定值…...
 
蓝桥杯2024年第十五届省赛真题-R 格式(高精度乘法 + 加法)
本题链接:蓝桥杯2024年第十五届省赛真题-R 格式 - C语言网 题目: 样例: 输入 2 3.14 输出 13 思路: 根据题意,结合数据范围,这是一道模板的高精度乘以低精度问题。 题意是double 类型 d 与…...
 
普通人做抖音小店真的能赚钱吗?可以,但更取决于个人
大家好,我是电商花花。 现在做抖音小店的基本上都是一些新商家,对于我们众多零基础的朋友来说,是期待也是一份挑战。 抖音小店作为一个充满机会的新兴平台,许多人都欣喜的投入其中,期望能够借此来改变自己的命运&…...
 
基于单链表实现通讯管理系统!(有完整源码!)
 个人主页:秋风起,再归来~ 文章专栏:C语言实战项目 个人格言:悟已往之不谏,知来者犹可追 克心守己,律己则安! 1、前言 友友们,这篇文章是基于单链…...
MATLAB入门介绍
MATLAB是由MathWorks公司开发的一款专业的数学计算软件,主要用于算法开发、数据可视化、数据分析以及数值计算等领域。它提供了一个易于使用的环境,让用户可以通过矩阵计算、函数和数据绘图、用户界面的创建以及编程和文档编写来解决各种数学问题。 MATL…...
 
【k8s】:深入理解 Kubernetes 中的污点(Taints)与容忍度(Tolerations)
【k8s】:深入理解 Kubernetes 中的污点(Taints)与容忍度(Tolerations) 1、污点(Taints)2、容忍度(Tolerations)3、示例演示-测试污点的具体应用场景3.1 给节点打污点&…...
 
Angular 使用DomSanitizer防范跨站脚本攻击
跨站脚本Cross-site scripting 简称XSS,是代码注入的一种,是一种网站应用程序的安全漏洞攻击。它允许恶意用户将代码注入到网页上,其他用户在使用网页时就会收到影响,这类攻击通常包含了HTML和用户端脚本语言(JS&…...
(八)PostgreSQL的数据库管理
PostgreSQL的数据库管理 基础信息 OS版本:Red Hat Enterprise Linux Server release 7.9 (Maipo) DB版本:16.2 pg软件目录:/home/pg16/soft pg数据目录:/home/pg16/data 端口:57771 创建数据库 CREATE DATABASE创建一…...
 
外包干了30天,技术倒退明显
先说情况,大专毕业,18年通过校招进入湖南某软件公司,干了接近6年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能…...
 
ruoyi-nbcio-plus基于vue3的flowable的自定义业务单表例子的升级修改
更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 http://122.227.135.243:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码:…...
 
【ENSP】华为三层交换机配置AAA认证,开启telnet服务
配置步骤 1.给交换机配置ip地址,以便登陆 2.配置AAA,用户名,密码,服务类型,用户权限 3.配置接入设备的数量 4.开启telnet服务 LSW2交换机配置 u t m #关闭提示 sys …...
collections模块下的Counter函数讲解
📚博客主页:knighthood2001 ✨公众号:认知up吧 (目前正在带领大家一起提升认知,感兴趣可以来围观一下) 🎃知识星球:【认知up吧|成长|副业】介绍 ❤️感谢大家点赞👍&…...
 
HarmonyOS开发实例:【分布式邮件】
概述 基于TS扩展的声明式开发范式编程语言编写的一个分布式邮件系统,可以由一台设备拉起另一台设备,每次改动邮件内容,都会同步更新两台设备的信息。效果图如下: 搭建OpenHarmony开发环境 完成本篇Codelab我们首先要完成开发环境…...
 
llama2.c与chinese-baby-llama2语言模型本地部署推理
文章目录 简介Github文档克隆源码英文模型编译运行中文模型(280M)main函数 简介 llama2.c是一个极简的Llama 2 LLM全栈工具,使用一个简单的 700 行 C 文件 ( run.c ) 对其进行推理。llama2.c涉及LLM微调、模型构建、推理端末部署(…...
 
008、Python+fastapi,第一个后台管理项目走向第8步:ubutun 20.04下安装vscode+python环境配置
一、说明 白飘了3个月无影云电脑,开始选了个windows server 非常不好用,后台改为ubuntu想升级到22,没成功,那就20.04吧。 今天先安装下开发环境,后续2个月就想把他当做开发服务器,不知道行不行,…...
 
2024.4.16 驱动开发
思维导图...
如何在 Ubuntu 14.04 上更改 PHP 设置
简介 PHP 是一种服务器端脚本语言,被许多流行的 CMS 和博客平台如 WordPress 和 Drupal 所使用。它也是流行的 LAMP 和 LEMP 堆栈的一部分。更新 PHP 配置设置是设置基于 PHP 的网站时的常见任务。定位确切的 PHP 配置文件可能并不容易。通常在服务器上会有多个 PH…...
 
【光伏企业】光伏项目怎么做才能提高效率?
一、精细化项目管理 项目规划:在项目启动前,进行充分的调研和规划,明确项目的目标、规模、预算和时间表,确保各项资源得到合理分配。 团队建设:组建一支高效、专业的项目团队,确保团队成员具备光伏领域的…...
 
毕设选51还是stm32?51太简单?
如果你更倾向于挑战和深入学习,STM32可能是更好的选择。如果你希望更专注于底层硬件原理,51可能更适合。我这里有一套嵌入式入门教程,不仅包含了详细的视频讲解,项目实战。如果你渴望学习嵌入式,不妨点个关注ÿ…...
 
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
 
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
 
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
 
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
 
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
 
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...


