【动态规划-最长上升子序列模型part2】:拦截导弹、导弹防御系统、最长公共上升子序列【已更新完成】
1、拦截导弹
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。
但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。
某天,雷达捕捉到敌国的导弹来袭。
由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数,导弹数不超过1000),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入格式
共一行,输入导弹依次飞来的高度。
输出格式
第一行包含一个整数,表示最多能拦截的导弹数。
第二行包含一个整数,表示要拦截所有导弹最少要配备的系统数。
数据范围
雷达给出的高度数据是不大于 30000的正整数,导弹数不超过 1000。
输入样例:
389 207 155 300 299 170 158 65
输出样例:
6
2
思路:
基本思路:
每次都拦截最长下降子序列
求的是第一次最多拦截的导弹数
还有最少需要配备多少个系统才能拦截所有导弹
先求最长不上升子序列,然后再求最多需要多少个系统才能完全拦截所有导弹
1、对于最长不上升子序列:动态规划求一遍最长上升子序列即可
2、对于需要的导弹拦截系统数:开一个数组,每个位置记录每个系统拦截结尾的导弹的高度,每次用二分搜索:
(1)找到这个数组中第一个大于等于(lower_bound)当前处理的导弹的高度,然后把这个序列的结尾改为当前导弹(即修改数组的值)
(2)如果找不到,那就另外开一个序列(数组大小+1)
另:
若数组升序排列
lower_bound(begin, end, a) 返回数组[begin, end)之间第一个大于或等于a的地址,找不到返回end
upper_bound(begin, end, a) 返回数组[begin, end)之间第一个大于a的地
址,找不到返回end
若数组降序排列,可写上比较函数greater<>()
lower_bound(begin, end, a, greater<>()) 返回数组[begin, end)之间第一个小于或等于a的地址,找不到返回end
upper_bound(begin, end, a, greater<>()) 返回数组[begin, end)之间第一个小于a的地址,找不到返回end
非数值数组的情况可选择手写比较函数,如
bool cmp(node a, node b)
{if(a.value1 != b.value1) return a.value1 < b.value1;else return a.value2 < b.value2;
}
代码:
#include<bits/stdc++.h>using namespace std;const int maxn = 1005;
int n, a[maxn];
int f[maxn], g[maxn];//每次都拦截最长下降子序列
//如果拦截完还有,就要把拦截过的去掉
//求的是第一次最多拦截的导弹数
//还有最少需要配备多少个系统才能拦截所有导弹// 题目的第二问,对于第i号导弹,要么选择末尾导弹高度最小的拦截系统,要么新创一个拦截系统,用一个数字即每套拦截系统此时所拦截的最后一个导弹高度,来表示该系统。
// 这样就得到了一个数组,数组最终长度就是所需最少拦截系统数目。int main()
{while(cin >> a[n]) n ++;int ans = 0, cnt = 0;for(int i = 0; i < n; i ++){f[i] = 1;for(int j = 0; j < i; j ++){if(a[i] <= a[j]) f[i] = max(f[i], f[j] + 1);}ans = max(ans, f[i]);//数组g的每个元素代表一套导弹拦截系统的拦截序列//g[i]表示此时第i套导弹拦截系统所拦截的最后一个导弹的高度int p = lower_bound(g, g+cnt, a[i]) - g;if(p == cnt) g[cnt ++] = a[i]; //a[i]开创一套新拦截系统 else g[p] = a[i]; //a[i]成为第p套拦截系统最后一个导弹高度}cout << ans << endl;cout << cnt << endl;return 0;
}
2、导弹防御系统(DFS+DP)
为了对抗附近恶意国家的威胁,R 国更新了他们的导弹防御系统。
一套防御系统的导弹拦截高度要么一直 严格单调 上升要么一直 严格单调 下降。
例如,一套系统先后拦截了高度为 3和高度为 4的两发导弹,那么接下来该系统就只能拦截高度大于 4的导弹。
给定即将袭来的一系列导弹的高度,请你求出至少需要多少套防御系统,就可以将它们全部击落。
输入格式
输入包含多组测试用例。
对于每个测试用例,第一行包含整数 n,表示来袭导弹数量。
第二行包含 n
个不同的整数,表示每个导弹的高度。
当输入测试用例 n=0 时,表示输入终止,且该用例无需处理。
输出格式
对于每个测试用例,输出一个占据一行的整数,表示所需的防御系统数量。
数据范围
1≤n≤50
输入样例:
5
3 5 2 4 1
0
输出样例:
2
样例解释
对于给出样例,最少需要两套防御系统。
一套击落高度为 3,4
的导弹,另一套击落高度为 5,2,1
的导弹。
思路:
本题不能像上题一样可以简单的划分状态(贪心),只能爆搜(因为没有固定规律,状态太难定义)
DFS求最小数目:
up表示上升子序列的结尾,down表示下降子序列的结尾
代码:
#include<iostream>
using namespace std;
const int N = 55;
int a[N], ans, up[N], down[N], n;
void dfs(int u, int d, int t) //u表示上升的系统个数,d表示下降的系统个数,t表示第t个数
{if(u + d >= ans) return ;if(t == n){if(u + d < ans)ans = u + d;return ;}int i;for(i = 1; i <= u; i++) //找到第一个末尾数小于a[t]的导弹系统if(up[i] < a[t])break;int temp = up[i];up[i] = a[t];//添加到该导弹系统中dfs(max(u, i), d, t + 1);up[i] = temp; //恢复现场for(i = 1; i <= d; i++)//找到第一个末尾数大于a[t]的导弹系统if(down[i] > a[t])break;temp = down[i];down[i] = a[t];//添加到该导弹系统中去dfs(u, max(d, i), t + 1);down[i] = temp;//恢复现场
}
int main()
{while(scanf("%d", &n) != EOF && n != 0){ans = 100;for(int i = 0; i < n; i++)cin >> a[i];dfs(0, 0, 0);printf("%d\n", ans);}return 0;
}
3、最长公共上升子序列
一个数的序列 bi,当 b1<b2<…<bS的时候,我们称这个序列是上升的。
对于给定的一个序列(a1,a2,…,aN),我们可以得到一些上升的子序列(ai1,ai2,…,aiK),这里1≤i1<i2<<iK≤N。
比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等等。
这些子序列中和最大为18,为子序列(1,3,5,9)的和。
你的任务,就是对于给定的序列,求出最大上升子序列和。
注意,最长的上升子序列的和不一定是最大的,比如序列(100,1,2,3)的最大上升子序列和为100,而最长上升子序列为(1,2,3)。
输入格式
输入的第一行是序列的长度N。
第二行给出序列中的N个整数,这些整数的取值范围都在0到10000(可能重复)。
输出格式
输出一个整数,表示最大上升子序列和。
数据范围
1≤N≤1000
输入样例:
7
1 7 3 5 9 4 8
输出样例:
18
思路:
结合了最长公共子序列和最长上升子序列两个问题
1、对于最长公共子序列:
状态表示:f[i][j]:表示在a[1–i],b[1–j]中,以b[j]结尾的公共子序列长度
属性:最大值
2、对于最长上升子序列:
状态表示:f[i][j]:表示在a[1–i],b[1–j]中,以b[j]结尾的最长上升子序列长度
属性:最大值
注:讨论是否包含a【i 】(两种情况)
代码:
#include <iostream>using namespace std;const int N = 3010;int n;
int a[N], b[N];
int f[N][N];int main()
{//inputcin >> n;for (int i = 1; i <= n; ++ i) cin >> a[i];for (int i = 1; i <= n; ++ i) cin >> b[i];//dpfor (int i = 1; i <= n; ++ i){int maxv = 1;for (int j = 1; j <= n; ++ j){f[i][j] = f[i - 1][j];if (b[j] == a[i]) f[i][j] = max(f[i][j], maxv);//包含a[i] if (b[j] < a[i]) maxv = max(maxv, f[i - 1][j] + 1); //不包含a[i] }}//find resultint res = 0;for (int i = 0; i <= n; ++ i) res = max(res, f[n][i]);cout << res << endl;return 0;
}
相关文章:
【动态规划-最长上升子序列模型part2】:拦截导弹、导弹防御系统、最长公共上升子序列【已更新完成】
1、拦截导弹 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。 但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。 某天,雷达捕捉到敌国的导弹来袭。 由于…...
Spring 如何解决 Bean 循环依赖
循环依赖解释 bean A 属性注入时依赖bean B ,并且bean B属性注入时也依赖bean A ,造成 bean A 和bean B 都无法完成初始化问题,形成了闭环。 注意 项目中存在Bean的循环依赖,是Bean对象职责划分不明确、代码质量不高的表现&#…...
【driver4】锁,错误码,休眠唤醒,中断,虚拟内存,tasklet
文章目录 1.互斥锁和自旋锁选择:自旋锁(开销少)的自旋时间和被锁住的代码执行时间成正比关系2.linux错误码:64位系统内核空间最后一页地址为0xfffffffffffff000~0xffffffffffffffff,这段地址是被保留的,如果…...
python之 函数相关知识解析
01 函数的注释与嵌套 1.函数的注释 函数的注释与普通注释的区别:用来说明当前函数的参数含义 param 参数名: 参数的注释信息 return: 函数的返回值 例如: def fun1(name):""":param name: 参数的注释信息:return: 函数的返回值"…...
监视器和显示器的区别,普通硬盘和监控硬盘的区别
监视器与显示器的区别,你真的知道吗? 中小型视频监控系统中,显示系统是最能展现效果的一个重要环节,显示系统的优劣将直接影响视频监控系统的用户体验满意度。 中小型视频监控系统中,显示系统是最能展现效果的一个重要…...
Linux:升级OpenSSL和OpenSSH
原因是现有版本存在安全漏洞,需要升级到新版本 原有版本和升级后的版本 OpenSSL 1.0.2k-fips 26 Jan 2017 -> OpenSSL 1.1.1w 11 Sep 2023OpenSSH_7.4p1, OpenSSL 1.0.2k-fips 26 Jan 2017 -> OpenSSH_9.5p1, OpenSSL 1.1.1w 11 Sep 2023目录 查看现有版…...
方法的入栈和出栈
一.作用域问题 1.全局作用域 在全局都能进行访问的变量 var a 10;function fn() {var b 20;return a b;}console.log(fn()); 2.局部的作用域 只能在限定的范围内进行访问 function fn() {var b 20;}console.log(b); b is not defined 打印的结果是b这个变量没用定义 3…...
PHP介绍
🐌博主主页:🐌倔强的大蜗牛🐌 📚专栏分类:PHP❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、PHP是什么? 二、 PHP 文件是什么? 三、PHP能做什么? 四、P…...
接口自动化测试之-requests模块详解
一、requests背景 Requests 继承了urllib2的所有特性。Requests支持HTTP连接保持和连接池,支持使用cookie保持会话,支持文件上传,支持自动确定响应内容的编码,支持国际化的 URL 和 POST 数据自动编码。 二、requests安装 利用p…...
低代码+定制物资管理:创新解决方案探析
引言 在当今快速变化的商业环境中,企业面临着不断增长的挑战,如提高效率、降低成本、满足客户需求等。为了应对这些挑战,企业需要不断创新并采用先进的技术解决方案。在这样的背景下,低代码开发和定制化物资管理成为了引领企业变…...
13 【PS作图】人物绘画理论-脸型
三庭五眼 三庭:脸的长度比例 (1)发际线到眉毛 (2)眉毛到鼻底 (3)鼻底到下巴 三个部分大致为三等分 五眼:脸的宽度比例 以眼睛长度为单位,把脸的宽度分成五等分&#x…...
Python批量修改图片文件名中的指定名称
批量处理图像时,图片名有时需要统一,本教程仅针对图片中名如:0001x4.png,批量将图片名中的x4去除,只留下0001.png的情况。 如果想要按照原图片顺序批量修改图片名,参考其它博文:按照原顺序批量…...
STM32点灯大师(点了一颗LED灯,轮询法)
配置操作: 一、使用CubeMX配置到大致的操作 1.1 选择芯片 1.2 选择引脚(根据电路图) 1.3 配置gpio口 1.4 配置系统 1.5文件项目操作 最后就是点击 二、点击CubeMX生成的代码,并且修改代码 2.1 看看效果 2.2 写代码...
动态规划算法:路径问题
例题一 解法(动态规划): 算法思路: 1. 状态表⽰: 对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式: i. 从 [i, j] 位置出发,巴拉巴拉; ii. 从起始位置出…...
盘一盘接口测试的那些痛点,你现在会解决了吗
前言 说到接口测试,想必大家一定不会陌生。接口测试就是测试系统组件间,接口对接是否顺畅的一种测试。包括测试数据能否交换、能否传递、能否正常控制管理过程,以及系统间的相互逻辑依赖关系,等等。 由于接口测试主要是检测系统…...
基于alpha shapes的边缘点提取(matlab)
1、原理介绍 由Edelsbrunner H提出的alpha shapes算法是一种简单、有效的快速提取边界点算法。其克服了点云边界点形状影响的缺点,可快速准确提取边界点。如下图所示,对于任意形状的平面点云,若一个半径为a的圆,绕其进行滚动&…...
C#三人飞行棋
C#三人飞行棋 #region 1控制台设置int w 50, h 30; ConsoleInit(w, h); #endregion#region 2 场景选择实例//声明一个表示场景标识的变量 E_SceneType nowSceneType new E_SceneType(); while (true) {switch (nowSceneType){case E_SceneType.Begion://开始场景逻辑Consol…...
Notes for the missing semester. Useful and basic knowledge about Linux.
The Shell Contents The first course is to introduce some simple commands. I’ll list some commands that I’m not familiar with: # --silent means dont give log info, # --head means we only want the http head. curl --head --silent bing.com.cn# cut --deli…...
【信息系统项目管理师知识点速记】资源管理基础
项目团队 执行项目工作,实现项目目标的一组人员。成员具备不同技能,可全职或兼职,随项目进展而变化。参与项目规划和决策,贡献专业技能,增强对项目的责任感。项目管理团队 直接参与项目管理活动的成员,负责项目管理和领导。负责项目各阶段的启动、规划、执行、监督、控制…...
Android性能优化面试题汇总
Android的性能优化涉及多个方面,如启动优化、稳定性优化、内存优化、网络优化、电量优化、安全优化等方面。 一、稳定性优化 1.1 你们做了哪些稳定性方面的优化 随着项目的逐渐成熟,用户基数逐渐增多,DAU持续升高,我们遇到了很多稳定性方面的问题,对于我们技术同学遇到…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
