Prompt提示词教程 | 提示工程指南 | 提示词示例 入门篇
在上一节中,我们介绍并给出了如何赋能大语言模型的基本示例。如果还没看而且是刚入门的同学建议看下,有个基本概念。
Prompt提示词教程 | 提示工程指南 | 提示工程简介https://blog.csdn.net/HRG520JN/article/details/138523705在本节中,我们会提供更多示例,介绍如何使用提示词来完成不同的任务,并介绍其中涉及的重要概念。通常,学习概念的最佳方法是通过示例进行学习。下面,我们将通过示例介绍说明如何使用精细的提示词来执行不同类型的任务。
1、文本概括
自然语言生成的标准任务之一是文本概括。文本概括可能涉及到不同的风格和领域。事实上,语言模型最前景的应用场景之一就是能够快速概括出易于理解的文章大意和相关概念。 我们可以使用提示词尝试一个简单的概括任务。
假设我想了解抗生素的相关信息,我可以给出这样的提示:
提示词
Explain antibiotics
A:
输出结果
Antibiotics are a type of medication used to treat bacterial infections. They work by either killing the bacteria or preventing them from reproducing, allowing the body’s immune system to fight off the infection. Antibiotics are usually taken orally in the form of pills, capsules, or liquid solutions, or sometimes administered intravenously. They are not effective against viral infections, and using them inappropriately can lead to antibiotic resistance.
在问答形式中,“A:” 是一种明确的提示格式。 在这个示例中,我用它去提示模型,我想要该概念的进一步解释。 在这个例子中,我们可能还不清楚使用它是否有用,我们会在之后的示例中探讨这一点。 现在假设我们感觉模型给了太多的信息,想要进一步提炼它。 我们可以指导模型帮我们用一句话总结相关内容:
提示词
Antibiotics are a type of medication used to treat bacterial infections. They work by either killing the bacteria or preventing them from reproducing, allowing the body’s immune system to fight off the infection. Antibiotics are usually taken orally in the form of pills, capsules, or liquid solutions, or sometimes administered intravenously. They are not effective against viral infections, and using them inappropriately can lead to antibiotic resistance.Explain the above in one sentence: // 用一句话解释上面的信息:
输出结果
Antibiotics are medications used to treat bacterial infections by either killing the bacteria or stopping them from reproducing, but they are not effective against viruses and overuse can lead to antibiotic resistance.
本示例是模型在没有过多关注上文输出内容的准确性的情况下,尝试用一个句子来总结段落内容。 关于上文准确性,我们可以通过指令或说明进一步改善它,这一点我们会在后续指南中进行探讨。 读到这里,您可以暂时停住并进行实验,看看是否能获得更好的结果。
2、信息提取
语言模型通过训练不仅可以用于执行自然语言生成相关任务,还可以用于执行文本分类和其他一系列自然语言处理 (NLP) 任务。
使用以下示例提示词从指定段落中提取信息:
提示词
Author-contribution statements and acknowledgements in research papers should state clearly and specifically whether, and to what extent, the authors used AI technologies such as ChatGPT in the preparation of their manuscript and analysis. They should also indicate which LLMs were used. This will alert editors and reviewers to scrutinize manuscripts more carefully for potential biases, inaccuracies and improper source crediting. Likewise, scientific journals should be transparent about their use of LLMs, for example when selecting submitted manuscripts.Mention the large language model based product mentioned in the paragraph above: // 指出上文中提到的大语言模型:
输出结果
The large language model based product mentioned in the paragraph above is ChatGPT.
我们可以通过许多方式改进以上结果,但当前方式已经非常有用。
现在应该很明显,您可以通过简单地指示语言模型去执行不同的任务。 AI 研发人员也利用这种能力来构建强大的产品和体验。
Paragraph source: ChatGPT: five priorities for research(opens in a new tab)
3、问答
提高模型响应精确度的最佳方法之一是改进提示词的格式。 如前所述,提示词可以通过指令、上下文、输入和输出指示以改进响应结果。 虽然这些要素不是必需的,但如果您的指示越明确,响应的结果就会越好。 以下示例可以说明结构化提示词的重要性。
提示词
Answer the question based on the context below. Keep the answer short and concise. Respond "Unsure about answer" if not sure about the answer. // 基于以下语境回答问题。如果不知道答案的话,请回答“不确定答案”。Context: Teplizumab traces its roots to a New Jersey drug company called Ortho Pharmaceutical. There, scientists generated an early version of the antibody, dubbed OKT3. Originally sourced from mice, the molecule was able to bind to the surface of T cells and limit their cell-killing potential. In 1986, it was approved to help prevent organ rejection after kidney transplants, making it the first therapeutic antibody allowed for human use.Question: What was OKT3 originally sourced from?Answer:
输出结果
Mice.
语境参考至 Nature(opens in a new tab)。
4、文本分类
目前,我们已经会使用简单的指令来执行任务。 作为提示工程师,您需要提供更好的指令。 此外, 您也会发现,对于更负责的使用场景,仅提供指令是远远不够的。 所以,您需要思考如何在提示词中包含相关语境和其他不同要素。 同样,你还可以提供其他的信息,如输入数据
和示例
。
可以通过以下示例体验文本分类:
提示词
Classify the text into neutral, negative or positive. // 将文本按中立、负面或正面进行分类Text: I think the food was okay. Sentiment:
输出结果
Neutral
我们给出了对文本进行分类的指令,语言模型做出了正确响应,判断文本类型为 'Neutral'
。 如果我们想要语言模型以指定格式做出响应, 比如,我们想要它返回 neutral
而不是 Neutral
, 那我们要如何做呢? 我们有多种方法可以实现这一点。 此例中,我们主要是关注绝对特性,因此,我们提示词中包含的信息越多,响应结果就会越好。 我们可以使用以下示例来校正响应结果:
提示词
Classify the text into neutral, negative or positive. Text: I think the vacation is okay.Sentiment: neutral Text: I think the food was okay. Sentiment:
输出结果
neutral
完美! 这次模型返回了 neutral
,这正是我们想要的特定标签。 提示词中的示例使得模型可以给出更具体的响应。 有时给出具体的指令十分重要,可以通过以下示例感受这一点:
提示词
Classify the text into nutral, negative or positive. Text: I think the vacation is okay.Sentiment:
输出结果
Neutral
这时候你知道给出具体指令的重要性了吧?
5、对话
你可以通过提示工程进行更有趣的实验,比如指导大语言模型系统如何表现,指定它的行为意图和身份。 如果你正在构建客服聊天机器人之类的对话系统时,这项功能尤其有用。
比如,可以通过以下示例创建一个对话系统,该系统能够基于问题给出技术性和科学的回答。 你可以关注我们是如何通过指令明确地告诉模型应该如何表现。 这种应用场景有时也被称为 角色提示(Role Prompting)。
提示词
The following is a conversation with an AI research assistant. The assistant tone is technical and scientific. // 以下是与 AI 助理的对话,语气应该专业、技术性强。Human: Hello, who are you?AI: Greeting! I am an AI research assistant. How can I help you today?Human: Can you tell me about the creation of blackholes?AI:
输出结果
Sure! Black holes are regions of spacetime where the gravitational force is so strong that nothing, not even light, can escape from it. They are created when a very massive star dies and its core collapses in on itself, forming a singularity of infinite density. The intense gravity of the singularity pulls in all the matter and radiation around it, creating the black hole.
我们的 AI 助理给出的回答非常技术对吧? 下面,我们让它给出更易于理解的答案。
提示词
The following is a conversation with an AI research assistant. The assistant answers should be easy to understand even by primary school students. // 以下是与 AI 助理的对话。请给出易于理解的答案,最好是小学生都能看懂的那种。Human: Hello, who are you?AI: Greeting! I am an AI research assistant. How can I help you today?Human: Can you tell me about the creation of black holes?AI:
输出结果
Sure! Black holes are created when a very massive star runs out of fuel and collapses in on itself. The gravity of the star is so strong that nothing, not even light, can escape its pull. This creates a point in space-time with an intense gravitational force called a black hole.
我想我们应该取得了一些进展, 你也可以继续改进它。 如果你再添加更多的示例,可能会得到更好的结果。
6、代码生成
大语言模型另外一个有效的应用场景是代码生成。 在此方面,Copilot 就是一个很好的示例。 你可以通过一些有效的提示词执行代码生成任务。 让我们来看一下下面的例子。
我们先用它写个简单的用户欢迎程序:
提示词
/*询问用户的姓名并说“ Hello”*/
输出结果
let name = prompt("What is your name?");console.log(`Hello, ${name}!`);
你看,我们甚至都不需要指定要使用的编程语言。
来,我们再稍微升级一下。 下面的例子会向你展示提示词会让大语言模型变得多么强大。
提示词
"""Table departments, columns = [DepartmentId, DepartmentName]Table students, columns = [DepartmentId, StudentId, StudentName]Create a MySQL query for all students in the Computer Science Department"""
输出结果
SELECT StudentId, StudentName FROM students WHERE DepartmentId IN (SELECT DepartmentId FROM departments WHERE DepartmentName = 'Computer Science');
挺厉害的嘛。 本例中,我们提供了有关数据库架构并要求它生成有效的 MySQL 查询。
7、推理
目前对于大语言模型来说,推理任务算是最具有挑战性的了。 推理任务最让人兴奋的地方就是可以促使各种复杂的应用程序从大语言模型中诞生。
目前,涉及数学能力的推理任务已经有了一些改进。 对于当前的大型语言模型来说,执行推理任务可能会有一些难度,因此就需要更高级的提示词工程技术。 我们会在后面的指南中介绍这些高级技术。 现在,我们将介绍几个基本示例来展示算术功能。
提示词
What is 9,000 * 9,000?
输出结果
81,000,000
来,我们加大难度:
提示词
The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1. A:
输出结果
No, the odd numbers in this group add up to an odd number: 119.
这不对! 我们试着用提示词去改进它:
提示词
The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1. Solve by breaking the problem into steps. First, identify the odd numbers, add them, and indicate whether the result is odd or even.
输出结果
Odd numbers: 15, 5, 13, 7, 1Sum: 41 41 is an odd number.
好多了吧? 顺便说一句,我试过几次,有时还是会失败。 如果你可以用示例给模型说明一下,可能会获得更准确的结果。
我们后面还会针对本章中介绍更多常见应用示例。
在后面的文章中,我们将介绍更高级的提示工程概念和技术,以完成更困难任务。
创作不易,来个三连(点赞、收藏、关注),同学们的满意是我(H-大叔)的动力。
代码运行有问题或其他建议,请在留言区评论,看到就会回复,不用私聊。
专栏人工智能 | 大模型 | 实战与教程里面还有其他人工智能|大数据方面的文章,可继续食用,持续更新。
相关文章:

Prompt提示词教程 | 提示工程指南 | 提示词示例 入门篇
在上一节中,我们介绍并给出了如何赋能大语言模型的基本示例。如果还没看而且是刚入门的同学建议看下,有个基本概念。 Prompt提示词教程 | 提示工程指南 | 提示工程简介https://blog.csdn.net/HRG520JN/article/details/138523705在本节中,我…...

uniapp + uView动态表单校验
项目需求:动态循环表单,并实现动态表单校验 页面: <u--form label-position"top" :model"tmForm" ref"tmForm" label-width"0px" :rulesrules><div v-for"(element, index) in tmForm…...

【Linux】HTTPS
欢迎来到Cefler的博客😁 🕌博客主页:折纸花满衣 🏠个人专栏:Linux 目录 👉🏻HTTPS协议概念👉🏻加密为什么要进行加密 👉🏻常见的加密方式对称加密…...

语音识别--使用YAMNet识别环境音
⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要3分钟 🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号…...
前端JS必用工具【js-tool-big-box】,邮箱,手机,身份证号,ip地址等正则验证方法学习
这一小节,我们针对前端npm包 js-tool-big-box 的使用做一些讲解,主要是针对项目中,邮箱,手机号,身份证号,ip地址,url格式,邮政编码等验证的方法使用。 目录 1 安装和引入 2 邮箱验…...

notepad++安装 hex-editor插件
打开notepad 点击插件 搜索 hex-editor,点击右侧 安装install 安装成功后,在已安装插件中就有显示了...

Ubuntu18.04设置SSH密钥登录
我们一般使用 VSCode 、MobaXterm、PuTTY等 SSH 客户端来远程管理 Linux 服务器。但是,一般的密码方式登录,容易有密码被暴力破解的问题。所以,一般我们会将 SSH 的端口设置为默认的 22 以外的端口,或者禁用 root 账户登录。但是即…...

自动化运维管理工具----------Ansible模块详细解读
目录 一、自动化运维工具有哪些? 1.1Chef 1.2puppet 1.3Saltstack 二、Ansible介绍 2.1Ansible简介 2.2Ansible特点 2.3Ansible工作原理及流程 2.3.1内部流程 2.3.2外部流程 三、Ansible部署 3.1环境准备 3.2管理端安装 ansible 3.3Ansible相关文件 …...

零基础代码随想录【Day27】|| 39. 组合总和,40.组合总和II, 131.分割回文串
目录 DAY27 39. 组合总和 解题思路&代码 40.组合总和II 解题思路&代码 131.分割回文串 解题思路&代码 DAY27 39. 组合总和 力扣题目链接(opens new window) 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有…...

实验15 MVC
二、实验项目内容(实验题目) 编写代码,掌握MVC的用法。 三、源代码以及执行结果截图: inputMenu.jsp: <% page contentType"text/html" %> <% page pageEncoding "utf-8" %> &…...

《Python编程从入门到实践》day21
# 昨日知识点回顾 设置背景颜色 在屏幕中央绘制飞船 # 今日知识点学习 12.5 重构:方法_check_events()和_update_screen() 12.5.1 方法_check_events() import sys import pygame from Settings import Settings from Ship import Shipclass AlienInvasion:"…...

上位机图像处理和嵌入式模块部署(树莓派4b镜像烧录经验总结)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 陆陆续续也烧录了好多次树莓派的镜像了,这里面有的时候很快,有的时候很慢。特别是烧录慢的时候,也不知道是自己…...

简单数据加解密,JS和JAVA同时实现
前端Vue调用Java后端接口中的数据进行加密,以避免敏感数据泄露。 现在实现一个高性能加密方法,用来对数据进行加密后传输。算法包括JS的加密和解密方法,也包括Java的加密解密方法。 可以在前端加密,后端解密。也可以在后端加密&…...
Android Framework中PackageManagerService的深度剖析
摘要 Android操作系统的核心服务之一——PackageManagerService(PMS),扮演着至关重要的角色,负责维护系统中所有应用程序的生命周期管理。本文旨在全面探讨PMS的功能特性、工作流程、实际应用场景,并对其进行优劣分析,以期为开发者…...
(AI Web、ChatGPT Native、Ai Loading、AI Tools、知豆AI)
目录 1、AI Web 2、ChatGPT Native 3、Ai Loading 4、AI Tools 5、知豆AI 1、AI Web...
VBA 批量处理Excel文件
目录 一. 批量创建Excel文件1.1 VBA的方式1.2 Powershell方式 二. 批量删除文件三. 批量重命名文件四. 合并多个Excel数据到一个Excel文件中 一. 批量创建Excel文件 1.1 VBA的方式 Sub CreateFiles()Dim strPath As String, strFileName As StringDim i As Long, rDim pathSe…...

PG实例连接访问控制
实例访问控制可以控制来自于不同主机,不同用户是否允许访问指定的数据库,以及验证方式。 与oracle中的连接管理器的功能相同,之前有写过一篇oracleCMAN连接管理器的配置实操: 配置oracle连接管理器(cman)…...

2024-05-07 商业分析-如何在社会层面做一个更好的工具人-记录
摘要: 2024-05-07 商业分析-如何成为一个靠谱的工具人 如何在社会层面做一个更好的工具人 那么今天讲的这个主题呢,对吧?你们一看啊,就觉得这个就不应该我讲是吧啊,但是呢这个逻辑呢我还得跟你们讲一下啊,就是如何成为…...

C++设计模式-创建型设计模式
设计模式 设计模式是什么 设计模式是指在软件开发中,经过验证的,用于解决在特定环境下,重复出现的,特定问题的解决方案;其实就是解决问题的固定套路。但是要慎用设计模式,有一定的工程代码量之后用它比较…...

code-server容器webpack的ws无法连接解决方法
TLDR 通过指定client的wsrul去连接ws devServer.client.webSocketURL ‘wss://<Forwarded uri>/ws’ 拓扑 1、code-server: 用于编写代码、启动webpack dev-server 服务;[https://<domain>:8001] 2、webpack: 用于浏览dev-server服务;[ht…...

wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...