深入探讨布隆过滤器算法:高效的数据查找与去重工具
在处理海量数据时,我们经常需要快速地进行数据查找和去重操作。然而,传统的数据结构可能无法满足这些需求,特别是在数据量巨大的情况下。在这种情况下,布隆过滤器(Bloom Filter)算法就显得尤为重要和有效。本文将深入探讨布隆过滤器算法的原理、应用和优势,并特别关注其误判率相关的内容。
布隆过滤器简介
布隆过滤器是由布隆(Burton Howard Bloom)于1970年提出的一种空间效率高、时间效率快的概率型数据结构,主要用于判断一个元素是否在一个集合中或者是否为重复元素。相比于传统的数据结构(如哈希表),布隆过滤器具有更小的存储空间和更快的查询速度,但是在一定概率上存在误判。
布隆过滤器原理
布隆过滤器的原理非常简单,它基于一系列哈希函数和一个足够大的位数组(通常是一个二进制向量)。具体来说,布隆过滤器包含以下几个关键要素:
- 位数组:用于存储数据的结构,通常初始化为全0。
- 多个哈希函数:用于将输入数据映射到位数组中的多个位置。
当一个元素被加入到布隆过滤器时,将其经过多个哈希函数计算得到的位置在位数组上标记为1。当需要查询某个元素是否存在时,同样将其经过相同的哈希函数计算得到的位置检查是否全部为1,如果全部为1,则认为该元素存在;如果有任何一个位置为0,则肯定不存在。
布隆过滤器的优势
布隆过滤器具有以下几个显著的优势:
- 空间效率高: 布隆过滤器只需要一个位数组和若干个哈希函数,相比于哈希表等传统数据结构,其空间占用要小得多。
- 查询速度快: 由于布隆过滤器只需要进行位数组的查询操作,而且哈希函数的计算也非常快速,因此查询速度非常快。
- 支持高并发: 布隆过滤器的查询操作是无状态的,因此可以很容易地进行并行化和分布式处理。
- 适用范围广: 布隆过滤器适用于大多数数据查找和去重场景,特别是在海量数据处理和实时性要求较高的场景下表现突出。
误判率与参数选择
布隆过滤器的误判率是指在判断一个元素是否存在时,由于哈希碰撞等原因导致误判的概率。误判率的计算与位数组大小(m)、哈希函数数量(k)以及插入元素数量(n)有关。
假设布隆过滤器的位数组大小为 m,哈希函数数量为 k,插入元素数量为 n。则误判率可以使用以下公式计算:
[P = \left(1 - e{-\frac{kn}{m}}\right)k]
其中,(e) 是自然对数的底(约等于 2.71828)。这个公式基于布隆过滤器的原理,即每个哈希函数的碰撞事件相互独立,因此计算出所有哈希函数都没有命中的概率。
下面是一个简单的误判率计算的例子:
假设位数组大小 (m = 10,000),哈希函数数量 (k = 3),插入元素数量 (n = 100)。首先计算 (kn/m) 的值:[kn/m = 3 * 100 / 10,000 = 0.03]然后计算 (e^{-kn/m}) 的值:[e^{-0.03} \approx 0.9704]最后计算 ((1 - e^{-kn/m})^k) 的值:[(1 - 0.9704)^3 \approx 0.0083]所以,误判率约为 (0.83%)。
通过调整位数组大小 (m) 和哈希函数数量 (k),可以控制误判率。通常情况下,为了达到较低的误判率,需要增加位数组的大小和哈希函数的数量,但这也会增加存储空间和计算成本。因此,在实际应用中,需要根据具体需求权衡误判率和资源消耗。
实例解析:Java中的布隆过滤器实现
以下是一个简单的Java实现布隆过滤器的示例代码:
public class BloomFilter {// 二进制向量的位数,相当于能存储1亿条url左右,误报率为亿分之一private static final int BIT_SIZE = 2 << 29;// 利用8个质数生成信息markprivate static final int[] seeds = new int[] { 2, 3, 5, 7, 11, 13, 31, 37 };private BitSet bits = new BitSet(BIT_SIZE);// 用于存储8个随机哈希值对象private MyHash[] hash = new MyHash[seeds.length];public BloomFilter() {for (int i = 0; i < seeds.length; i++) {hash[i] = new MyHash(BIT_SIZE, seeds[i]);}}/*** 像过滤器中添加字符串*/public void addValue(String value) {// 将字符串value哈希为8个或多个整数,然后在这些整数的bit上变为1if (value != null) {for (MyHash h : hash)bits.set(h.hashCode(value), true);}}/*** 判断字符串是否包含在布隆过滤器中*/public boolean contains(String value) {if (value == null)return false;boolean bool = true;// 将要比较的字符串重新以上述方法计算hash值,再与布隆过滤器比对for (MyHash h : hash)bool = bool && bits.get(h.hashCode(value));return bool;}/*** 随机哈希值对象*/class MyHash {private int size;// 二进制向量数组大小private int mark;// 随机数种子public MyHash(int cap, int mark) {this.size = cap;this.mark = mark;}/*** 计算哈希值(可以是其他自定义哈希函数)*/public int hashCode(String key) {int hashVal = 0;for (int i = 0; i < key.length() - 1; i++) {hashVal = mark * hashVal + key.charAt(i);}return (size - 1) & hashVal;}}public static void main(String[] args) {BloomFilter b = new BloomFilter();long start = System.currentTimeMillis();for (int i = 10000000; i >= 1; i--) {b.addValue("www.sougou.com" + i);}System.out.println(b.contains("www.sougou.com100"));System.out.println(b.contains("www.sougou.com100000001"));long end = System.currentTimeMillis();System.out.println("耗时:" + (end - start) + "毫秒");}
}
结论
布隆过滤器算法作为一种高效的数据查找和去重工具,在海量数据处理领域有着广泛的应用。虽然布隆过滤器存在一定的误判率,但是通过合理设置位数组大小和哈希函数数量,可以将误判率控制在可接受的范围内。在实际应用中,我们可以根据具体场景和需求选择合适的布隆过滤器参数,从而发挥其最大的优势。
希望本文能够帮助读者更深入地了解布隆过滤器算法,并在实际应用中发挥其作用。如果您对布隆过滤器算法还有其他疑问或者想要进一步探讨,欢迎在评论区留言交流!
相关文章:
深入探讨布隆过滤器算法:高效的数据查找与去重工具
在处理海量数据时,我们经常需要快速地进行数据查找和去重操作。然而,传统的数据结构可能无法满足这些需求,特别是在数据量巨大的情况下。在这种情况下,布隆过滤器(Bloom Filter)算法就显得尤为重要和有效。…...

基于STC12C5A60S2系列1T 8051单片机实现一主单片机与一从单片机进行双向串口通信功能
基于STC12C5A60S2系列1T 8051单片机实现一主单片机与一从单片机进行双向串口通信功能 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机串口通信介绍STC12C5A60S2系列1T 8051单片机串口通信的结构基于STC12C5A60S2系列1T 8051单片机串口通信的特殊功能寄存器…...
ubuntu18.04安装docker容器
Ubuntu镜像下载 https://mirrors.huaweicloud.com/ubuntu-releases/ docker安装 # 第一步、卸载旧版本docker sudo apt-get remove docker docker-engine docker.io containerd runc# 第二步、更新及安装软件 luhost:~$ curl -fsSL https://get.docker.com -o get-docker.sh …...
202212青少年软件编程(Python)等级考试试卷(二级)
第 1 题 【单选题】 运行下列程序, 最终输出的结果是? ( ) info = {1:小明, 2:小黄,3:小兰}info[4] = 小红info[...
单播、组播、广播
概念 单播(Unicast) 单播是网络中最常用、最基本的通信方式。在单播通信中,数据包从一个节点发送到特定的另一个节点。换句话说,发送端和接收端之间建立一对一的连接,然后进行数据传输。 例如&#x…...

吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.13-1.14
目录 第二门课: 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)1.13 梯度检验&#…...

笔试强训未触及题目(个人向)
1.DP22 最长回文子序列 1.题目 2.解析 这是一个区间dp问题,我们让dp[i][j]表示在区间[i,j]内的最长子序列长度,如图: 3.代码 public class LongestArr {//DP22 最长回文子序列public static void main(String[] args) {Scanner…...
【YOLO改进】换遍MMDET主干网络之EfficientNet(基于MMYOLO)
EfficientNet EfficientNet是Google在2019年提出的一种新型卷积神经网络架构,其设计初衷是在保证模型性能的同时,尽可能地降低模型的复杂性和计算需求。EfficientNet的核心思想是通过均衡地调整网络的深度(层数)、宽度࿰…...

uniapp下拉选择组件
uniapp下拉选择组件 背景实现思路代码实现配置项使用尾巴 背景 最近遇到一个这样的需求,在输入框中输入关键字,通过接口查询到结果之后,以下拉框列表形式展现供用户选择。查询了下uni-app官网和项目中使用的uv-ui库,没找到符合条…...
高斯数据库创建函数的语法
CREATE FUNCTION 语法格式 •兼容PostgreSQL风格的创建自定义函数语法。 CREATE [ OR REPLACE ] FUNCTION function_name ( [ { argname [ argmode ] argtype [ { DEFAULT | : | } expression ]} [, …] ] ) [ RETURNS rettype [ DETERMINISTIC ] | RETURNS TABLE ( { column_…...

【.NET Core】你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟
你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟 文章目录 你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟一、概述二、CallerMemberNameAttribute类三、CallerFilePathAttribute 类四、CallerLineNumberAttribute 类…...
ubuntu删除opencv
要完全删除OpenCV 3.4.5版本,你可以按照以下步骤进行操作: 卸载OpenCV库: 首先,你需要卸载OpenCV 3.4.5版本。可以使用以下命令卸载OpenCV库: sudo apt-get purge libopencv*这将删除OpenCV库及其相关文件。 删除O…...

K8s源码分析(二)-K8s调度队列介绍
本文首发在个人博客上,欢迎来踩! 本次分析参考的K8s版本是 文章目录 调度队列简介调度队列源代码分析队列初始化QueuedPodInfo元素介绍ActiveQ源代码介绍UnschedulableQ源代码介绍**BackoffQ**源代码介绍队列弹出待调度的Pod队列增加新的待调度的Podpod调…...
OpenGL ES 面试高频知识点(二)
说说纹理常用的采样方式? 最邻近点采样(GL_NEAREST)和双线性采样(GL_LINEAR)。 GL_NEAREST 采样是 OpenGL 默认的纹理采样方式,OpenGL 会选择中心点最接近纹理坐标的那个像素,纹理放大的时候会有锯齿感或者颗粒感。 **GL_LINEAR 采样会基于纹理坐标附近的纹理像素,计…...

2024第十六届“中国电机工程学会杯”数学建模A题B题思路分析
文章目录 1 赛题思路2 比赛日期和时间3 竞赛信息4 建模常见问题类型4.1 分类问题4.2 优化问题4.3 预测问题4.4 评价问题 5 建模资料 1 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 2 比赛日期和时间 报名截止时间:2024…...
面向对象的三大特性:封装、继承、多态
一、封装 封装是面向对象的核心思想。是以类为载体,将对象的属性和行为封装起来,对外隐藏其实现细节。 封装保证了类内部数据结构的完整性,使得外部(使用该类的用户)不能轻易地直接操作此数据结构,只能执…...
目标检测YOLO实战应用案例100讲-基于深度学习的交通场景多尺度目标检测算法研究与应用(中)
目录 3.4 实验结果与分析 深度融合注意力跨尺度复合空洞残差交通目标检测算法...
前端GET请求下载后端返回数据流文件,并且处理window.open方法跳转白屏方法
平时常用导出都是用window.open方法 点击跳转连接:使用 window.open 下载 const downError 地址?&参数${参数|| }; const downError Url/xxx/xxx?&orgId${orgId || };window.open(downError, "_self");//调用window.open方法导出 而使用…...
SD321放大器3V输入电流电压保护二极管25C电源电流
Sd 321运算放大器可以在单电源或双电源电压下工作, 可以使用最坏情况下的非反相单位增益连接来适应。如 具有真微分输入,并且保持在线性模式,输入共模电压 果放大器必须驱动较大的负载电容,则应使用较大的闭 为0。Vpc-这种放大器可…...

geoserver SQL注入、Think PHP5 SQL注入、spring命令注入
文章目录 一、geoserver SQL注入CVE-2023-25157二、Think PHP5 SQL注入三、Spring Cloud Function SpEL表达式命令注入(CVE-2022-22963) 一、geoserver SQL注入CVE-2023-25157 介绍:GeoServer是一个开源的地理信息系统(GIS&#…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
NPOI操作EXCEL文件 ——CAD C# 二次开发
缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
安卓基础(Java 和 Gradle 版本)
1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...

WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...
嵌入式面试常问问题
以下内容面向嵌入式/系统方向的初学者与面试备考者,全面梳理了以下几大板块,并在每个板块末尾列出常见的面试问答思路,帮助你既能夯实基础,又能应对面试挑战。 一、TCP/IP 协议 1.1 TCP/IP 五层模型概述 链路层(Link Layer) 包括网卡驱动、以太网、Wi‑Fi、PPP 等。负责…...