当前位置: 首页 > news >正文

Pytorch常用的函数(九)torch.gather()用法

Pytorch常用的函数(九)torch.gather()用法

torch.gather() 就是在指定维度上收集value。

torch.gather() 的必填也是最常用的参数有三个,下面引用官方解释:

  • input (Tensor) – the source tensor
  • dim (int) – the axis along which to index
  • index (LongTensor) – the indices of elements to gather

一句话概括 gather 操作就是:根据 index ,在 inputdim 维度上收集 value

1、举例直观理解

# 1、我们有input_tensor如下
>>> input_tensor = torch.arange(24).reshape(2, 3, 4)
tensor([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])# 2、我们有index_tensor如下
>>> index_tensor = torch.tensor([[[0, 0, 0, 0],[2, 2, 2, 2]],[[0, 0, 0, 0],[2, 2, 2, 2]]]
)	# 3、我们通过torch.gather()函数获取out_tensor
>>> out_tensor = torch.gather(input_tensor, dim=1, index=index_tensor)
tensor([[[ 0,  1,  2,  3],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[20, 21, 22, 23]]])

我们以out_tensor中[0,1,0]=8为例,解释下如何利用dim和index,从input_tensor中获得8。

在这里插入图片描述

根据上图,我们很直观的了解根据 index ,在 inputdim 维度上收集 value的过程。

  • 假设 inputindex 均为三维数组,那么输出 tensor 每个位置的索引是列表 [i, j, k] ,正常来说我们直接取 input[i, j, k] 作为 输出 tensor 对应位置的值即可;
  • 但是由于 dim 的存在以及 input.shape 可能不等于 index.shape ,所以直接取值可能就会报错 ;
  • 所以我们是将索引列表的相应位置替换为 dim ,再去 input 取值。在上面示例中,由于dim=1,那么我们就替换索引列表第1个值,即[i,dim,k],因此由原来的[0,1,0]替换为[0,2,0]后,再去input_tensor中取值。
  • pytorch官方文档的写法如下,同一个意思。
out[i][j][k] = input[index[i][j][k]][j][k]  # if dim == 0
out[i][j][k] = input[i][index[i][j][k]][k]  # if dim == 1
out[i][j][k] = input[i][j][index[i][j][k]]  # if dim == 2

2、反推法再理解

# 1、我们有input_tensor如下
>>> input_tensor = torch.arange(24).reshape(2, 3, 4)
tensor([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])# 2、假设我们要得到out_tensor如下
>>> out_tensor
tensor([[[ 0,  1,  2,  3],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[20, 21, 22, 23]]])# 3、如何知道dim 和 index_tensor呢? 
# 首先,我们要记住:out_tensor的shape = index_tensor的shape# 从 output_tensor 的第一个位置开始:
# 此时[i, j, k]一样,看不出来 dim 应该是多少
output_tensor[0, 0, :] = input_tensor[0, 0, :] = 0
# 同理可知,此时index都为0
output_tensor[0, 0, 1] = input_tensor[0, 0, 1] = 1
output_tensor[0, 0, 2] = input_tensor[0, 0, 2] = 2
output_tensor[0, 0, 3] = input_tensor[0, 0, 3] = 3# 我们从下一行的第一个位置开始:
# 这里我们看到维度 1 发生了变化,1 变成了 2,所以 dim 应该是 1,而 index 应为 2
output_tensor[0, 1, 0] = input_tensor[0, 2, 0] = 8
# 同理可知,此时index都为2
output_tensor[0, 1, 1] = input_tensor[0, 2, 1] = 9
output_tensor[0, 1, 2] = input_tensor[0, 2, 2] = 10
output_tensor[0, 1, 3] = input_tensor[0, 2, 3] = 11# 根据上面推导我们易知dim=1,index_tensor为:
>>> index_tensor = torch.tensor([[[0, 0, 0, 0],[2, 2, 2, 2]],[[0, 0, 0, 0],[2, 2, 2, 2]]]
)	

3、实际案例

在大神何凯明MAE模型(Masked Autoencoders Are Scalable Vision Learners)源码中,多次使用了torch.gather() 函数。

  • 论文链接:https://arxiv.org/pdf/2111.06377
  • 官方源码:https://github.com/facebookresearch/mae

在MAE中根据预设的掩码比例(paper 中提倡的是 75%),使用服从均匀分布的随机采样策略采样一部分 tokens 送给 Encoder,另一部分mask 掉。采样25%作为unmasked tokens过程中,使用了torch.gather() 函数。

# models_mae.pyimport torchdef random_masking(x, mask_ratio=0.75):"""Perform per-sample random masking by per-sample shuffling.Per-sample shuffling is done by argsort random noise.x: [N, L, D], sequence"""N, L, D = x.shape  # batch, length, dimlen_keep = int(L * (1 - mask_ratio))  # 计算unmasked的片数# 利用0-1均匀分布进行采样,避免潜在的【中心归纳偏好】noise = torch.rand(N, L, device=x.device)  # noise in [0, 1]# sort noise for each sample【核心代码】ids_shuffle = torch.argsort(noise, dim=1)  # ascend: small is keep, large is removeids_restore = torch.argsort(ids_shuffle, dim=1)# keep the first subsetids_keep = ids_shuffle[:, :len_keep]# 利用torch.gather()从源tensor中获取25%的unmasked tokensx_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))# generate the binary mask: 0 is keep, 1 is removemask = torch.ones([N, L], device=x.device)mask[:, :len_keep] = 0# unshuffle to get the binary maskmask = torch.gather(mask, dim=1, index=ids_restore)return x_masked, mask, ids_restoreif __name__ == '__main__':x = torch.arange(64).reshape(1, 16, 4)random_masking(x)
# x模拟一张图片经过patch_embedding后的序列
# x相当于input_tensor
# 16是patch数量,实际上一般为(img_size/patch_size)^2 = (224 / 16)^2 = 14*14=196
# 4是一个patch中像素个数,这里只是模拟,实际上一般为(in_chans * patch_size * patch_size = 3*16*16 = 768)
>>> x = torch.arange(64).reshape(1, 16, 4) 
tensor([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11],[12, 13, 14, 15],[16, 17, 18, 19], # 4[20, 21, 22, 23],[24, 25, 26, 27],[28, 29, 30, 31],[32, 33, 34, 35],[36, 37, 38, 39],[40, 41, 42, 43], # 10[44, 45, 46, 47],[48, 49, 50, 51], # 12[52, 53, 54, 55], # 13[56, 57, 58, 59],[60, 61, 62, 63]]])
# dim=1, index相当于index_tensor
>>> index
tensor([[[10, 10, 10, 10],[12, 12, 12, 12],[ 4,  4,  4,  4],[13, 13, 13, 13]]])# x_masked(从源tensor即x中,随机获取25%(4个patch)的unmasked tokens)     
>>> x_masked相当于out_tensor
tensor([[[40, 41, 42, 43],[48, 49, 50, 51],[16, 17, 18, 19],[52, 53, 54, 55]]])

相关文章:

Pytorch常用的函数(九)torch.gather()用法

Pytorch常用的函数(九)torch.gather()用法 torch.gather() 就是在指定维度上收集value。 torch.gather() 的必填也是最常用的参数有三个,下面引用官方解释: input (Tensor) – the source tensordim (int) – the axis along which to indexindex (Lo…...

用爬虫解决问题

使用Java进行网络爬虫开发是一种常见的做法,它可以帮助你从网站上自动抓取信息。Java语言因为其丰富的库支持(如Jsoup、HtmlUnit、Selenium等)和良好的跨平台性,成为实现爬虫的优选语言之一。下面我将简要介绍如何使用Java编写一个…...

机器学习-有监督学习

有监督学习是机器学习的一种主要范式,其基本思想是从有标签的训练数据中学习输入和输出之间的关系,然后利用学习到的模型对新的输入进行预测或分类。 有监督学习的过程如下: 1. 准备数据:首先,需要准备一组有标签的训练…...

【详细介绍下Visual Studio】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…...

【Golang】实现 Excel 文件下载功能

在当今的网络应用开发中,提供数据导出功能是一项常见的需求。Excel 作为一种广泛使用的电子表格格式,通常是数据导出的首选格式之一。在本教程中,我们将学习如何使用 Go 语言和 Gin Web 框架来创建一个 Excel 文件,并允许用户通过…...

设计模式2——原则篇:依赖倒转原则、单一职责原则、合成|聚合复用原则、开放-封闭原则、迪米特法则、里氏代换原则

设计模式2——设计原则篇 目录 一、依赖倒转原则 二、单一职责原则(SRP) 三、合成|聚合复用原则(CARP) 四、开放-封闭原则 五、迪米特法则(LoD) 六、里氏代换原则 七、接口隔离原则 八、总结 一、依赖…...

深入探讨布隆过滤器算法:高效的数据查找与去重工具

在处理海量数据时,我们经常需要快速地进行数据查找和去重操作。然而,传统的数据结构可能无法满足这些需求,特别是在数据量巨大的情况下。在这种情况下,布隆过滤器(Bloom Filter)算法就显得尤为重要和有效。…...

基于STC12C5A60S2系列1T 8051单片机实现一主单片机与一从单片机进行双向串口通信功能

基于STC12C5A60S2系列1T 8051单片机实现一主单片机与一从单片机进行双向串口通信功能 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机串口通信介绍STC12C5A60S2系列1T 8051单片机串口通信的结构基于STC12C5A60S2系列1T 8051单片机串口通信的特殊功能寄存器…...

ubuntu18.04安装docker容器

Ubuntu镜像下载 https://mirrors.huaweicloud.com/ubuntu-releases/ docker安装 # 第一步、卸载旧版本docker sudo apt-get remove docker docker-engine docker.io containerd runc# 第二步、更新及安装软件 luhost:~$ curl -fsSL https://get.docker.com -o get-docker.sh …...

202212青少年软件编程(Python)等级考试试卷(二级)

第 1 题 【单选题】 运行下列程序, 最终输出的结果是? ( ) info = {1:小明, 2:小黄,3:小兰}info[4] = 小红info[...

单播、组播、广播

​​​​​​ 概念 单播(Unicast) 单播是网络中最常用、最基本的通信方式。在单播通信中,数据包从一个节点发送到特定的另一个节点。换句话说,发送端和接收端之间建立一对一的连接,然后进行数据传输。 例如&#x…...

吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.13-1.14

目录 第二门课: 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)1.13 梯度检验&#…...

笔试强训未触及题目(个人向)

1.DP22 最长回文子序列 1.题目 2.解析 这是一个区间dp问题,我们让dp[i][j]表示在区间[i,j]内的最长子序列长度,如图: 3.代码 public class LongestArr {//DP22 最长回文子序列public static void main(String[] args) {Scanner…...

【YOLO改进】换遍MMDET主干网络之EfficientNet(基于MMYOLO)

EfficientNet EfficientNet是Google在2019年提出的一种新型卷积神经网络架构,其设计初衷是在保证模型性能的同时,尽可能地降低模型的复杂性和计算需求。EfficientNet的核心思想是通过均衡地调整网络的深度(层数)、宽度&#xff0…...

uniapp下拉选择组件

uniapp下拉选择组件 背景实现思路代码实现配置项使用尾巴 背景 最近遇到一个这样的需求,在输入框中输入关键字,通过接口查询到结果之后,以下拉框列表形式展现供用户选择。查询了下uni-app官网和项目中使用的uv-ui库,没找到符合条…...

高斯数据库创建函数的语法

CREATE FUNCTION 语法格式 •兼容PostgreSQL风格的创建自定义函数语法。 CREATE [ OR REPLACE ] FUNCTION function_name ( [ { argname [ argmode ] argtype [ { DEFAULT | : | } expression ]} [, …] ] ) [ RETURNS rettype [ DETERMINISTIC ] | RETURNS TABLE ( { column_…...

【.NET Core】你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟

你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟 文章目录 你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟一、概述二、CallerMemberNameAttribute类三、CallerFilePathAttribute 类四、CallerLineNumberAttribute 类…...

ubuntu删除opencv

要完全删除OpenCV 3.4.5版本,你可以按照以下步骤进行操作: 卸载OpenCV库: 首先,你需要卸载OpenCV 3.4.5版本。可以使用以下命令卸载OpenCV库: sudo apt-get purge libopencv*这将删除OpenCV库及其相关文件。 删除O…...

K8s源码分析(二)-K8s调度队列介绍

本文首发在个人博客上,欢迎来踩! 本次分析参考的K8s版本是 文章目录 调度队列简介调度队列源代码分析队列初始化QueuedPodInfo元素介绍ActiveQ源代码介绍UnschedulableQ源代码介绍**BackoffQ**源代码介绍队列弹出待调度的Pod队列增加新的待调度的Podpod调…...

OpenGL ES 面试高频知识点(二)

说说纹理常用的采样方式? 最邻近点采样(GL_NEAREST)和双线性采样(GL_LINEAR)。 GL_NEAREST 采样是 OpenGL 默认的纹理采样方式,OpenGL 会选择中心点最接近纹理坐标的那个像素,纹理放大的时候会有锯齿感或者颗粒感。 **GL_LINEAR 采样会基于纹理坐标附近的纹理像素,计…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...