python中的装饰器,例子说明
在Python中,嵌套装饰器是指在一个函数上应用多个装饰器。每个装饰器都可以为函数添加一些特定的功能。以下是一个稍微复杂一些的例子,我们将创建一个记录日志和验证权限的嵌套装饰器。
### 例子:记录日志和权限验证的嵌套装饰器
假设我们正在开发一个简单的web应用,并且需要对某些视图函数进行日志记录和权限验证。
#### 1. 日志记录装饰器
首先,我们创建一个用于记录日志的装饰器:
```python
import functools
import time
def log_decorator(func):
@functools.wraps(func)
def wrapper_log(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"Function {func.__name__} took {end_time - start_time:.4f} seconds to execute.")
return result
return wrapper_log
```
#### 2. 权限验证装饰器
接下来,我们创建一个用于权限验证的装饰器:
```python
def permission_decorator(required_permission):
def decorator(func):
@functools.wraps(func)
def wrapper_permission(*args, **kwargs):
# 假设这是检查权限的逻辑
user_permission = kwargs.get('permission', 'guest') # 从函数参数中获取权限
if user_permission == required_permission:
return func(*args, **kwargs)
else:
print(f"Permission denied. Required: {required_permission}, provided: {user_permission}")
return None
return wrapper_permission
return decorator
```
#### 3. 嵌套装饰器的应用
现在,我们可以在一个视图函数上应用这两个装饰器:
```python
@log_decorator
@permission_decorator(required_permission='admin')
def top_secret_data_view(user_id, permission):
print(f"Showing top secret data for user {user_id}.")
# 这里应该是获取和显示数据的逻辑
return "Top secret data displayed."
# 调用函数,模拟用户权限为'admin'
top_secret_data_view(user_id=1, permission='admin')
# 调用函数,模拟用户权限为'user'
top_secret_data_view(user_id=1, permission='user')
```
输出结果:
```
Function top_secret_data_view took 0.0000 seconds to execute.
Showing top secret data for user 1.
Top secret data displayed.
Function top_secret_data_view took 0.0000 seconds to execute.
Permission denied. Required: admin, provided: user
```
在这个例子中,我们首先应用了`@log_decorator`来记录函数的执行时间,然后是`@permission_decorator`来验证调用者是否具有所需的权限。如果用户权限不足,函数将不会执行主要的逻辑,并且会打印出权限拒绝的消息。
相关文章:
python中的装饰器,例子说明
在Python中,嵌套装饰器是指在一个函数上应用多个装饰器。每个装饰器都可以为函数添加一些特定的功能。以下是一个稍微复杂一些的例子,我们将创建一个记录日志和验证权限的嵌套装饰器。 ### 例子:记录日志和权限验证的嵌套装饰器 假设我们正…...
Leetcode经典题目之用队列实现栈
P. S.:以下代码均在VS2019环境下测试,不代表所有编译器均可通过。 P. S.:测试代码均未展示头文件stdio.h的声明,使用时请自行添加。 目录 1、题目展示2、题目分析3、完整代码演示4、结语 1、题目展示 前面我们了解过如何实现队列…...
DBSCAN聚类算法
目录 背景DBSCAN算法DBSCAN算法原理DBSCAN算法基本步骤DBSCAN算法调优DBSCAN算法优缺点参考文献 背景 如果有车队在某一片区域经常规律性作业,现在要让你来绘制这一片的路网,你会选择让一辆车从头到尾把所有路网跑一遍还是基于历史轨迹点通过技术手段构…...
【tauri】安装
https://blog.csdn.net/freewebsys/article/details/136092092 1 安装nodejs curl -sL https://deb.nodesource.com/setup_18.x -o nodesource_setup.sh sudo bash nodesource_setup.sh sudo apt install nodejs # 查看版本 node -v2 安装webkit2 sudo apt update sudo apt i…...
(Java)心得:LeetCode——19.删除链表的倒数第 N 个节点
一、原题 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 示例 1: 输入:head [1,2,3,4,5], n 2 输出:[1,2,3,5]示例 2: 输入:head [1], n 1 输出:[]示例 3&…...
树莓派安装opencv
安装opencv 上述步骤完成后,输入以下代码(基于python3) sudo apt-get install python3-opencv -y不行的话,试试换源,然后 sudo apt-get update成功! 测试opencv是否安装成功 输入 python3 然后再输入 import cv2 没有报错就…...
bert 的MLM框架任务-梯度累积
参考:BEHRT/task/MLM.ipynb at ca0163faf5ec09e5b31b064b20085f6608c2b6d1 deepmedicine/BEHRT GitHub class BertConfig(Bert.modeling.BertConfig):def __init__(self, config):super(BertConfig, self).__init__(vocab_size_or_config_json_fileconfig.get(vo…...
Nginx配置/.well-known/pki-validation/
当你需要在Nginx上配置.well-known/pki-validation/时,这通常是为了支持SSL证书的自动续订或其他验证目的。以下是配置步骤: 创建目录结构: 在你的网站根目录下创建一个名为.well-known的目录(SSL证书申请之如何创建/.well-known/…...
iOS LQG开发框架(持续更新)
基本规则 开发便利性为前提,妥协性能可维护性为前提可读性MVC各部分职责一定要清晰,controll类里面功能尽量抽离成helper,功能一定要清晰,这个非常重要,对代码可读性提升非常高方法内部尽量使用局部变量,最…...
Python 自动化脚本系列:第3集
21. 使用 cryptography 自动化文件加密 Python 的 cryptography 库提供了一种安全的方式,使用对称加密算法对文件进行加密和解密。你可以自动化加密和解密文件的过程来保护敏感数据。 示例:文件加密和解密 假设你想使用对称加密算法加密一个文件&…...
Matlab-粒子群优化算法实现
文章目录 一、粒子群优化算法二、相关概念和流程图三、例题实现结果 一、粒子群优化算法 粒子群优化算法起源于鸟类觅食的经验,也就是一群鸟在一个大空间内随机寻找食物,目标是找到食物最多的地方。以下是几个条件: (1) 所有的鸟都会共享自己的位置以及…...
python 新特性
文章目录 formatted字符串字面值formatted字符串支持 字符串新方法变量类型标注二进制表示中数字为1的数量统计字典的三个方法新增mapping属性函数zip()新增strict参数dataclass字典合并match 语法 formatted字符串字面值 formatted字符串是带有’f’字符前缀的字符串…...
十一、Redis持久化-RDB、AOF
Redis提供了两种持久化数据的方式。一种是RDB快照,另一种是AOF日志。RDB快照是一次全量备份,AOF日志是连续的增量备份。RDB快照是以二进制的方式存放Redis中的数据,在存储上比较紧凑;AOF日志记录的是对内存数据修改的指令文本记录…...
Oracle闪回数据库【Oracle闪回技术】(二)
理解Oracle闪回级别【Oracle闪回技术】(一)-CSDN博客 Oracle默认是不开启闪回数据库的。如果开启闪回数据库的前提条件是,开启Oracle归档模式并启用闪回恢复区。 因为闪回日志文件存放在闪回恢复区中,如果在RAC环境下,必须将闪回恢复区存储在集群文件或者ASM文件中。 一…...
简单负载均衡
题目描述 某工程师为了解决服务器负载过高的问题,决定使用多个服务器来分担请求消息。 现给定 k 台服务器(编号从 1 到 k),以及一批请求消息的信息,格式为到达时刻 负载大小,消息说明: 每个时刻…...
Portforge:一款功能强大的轻量级端口混淆工具
关于Portforge Portforge是一款功能强大的轻量级端口混淆工具,该工具使用Crystal语言开发,可以帮助广大研究人员防止网络映射,这样一来,他人就无法查看到你设备正在运行(或没有运行)的服务和程序了。简而言…...
1.8. 离散时间鞅-无界停时定理与随机游走
无界停时定理与随机游走 无界停时定理与随机游走1. 无界停时定理1.1. 一致可积1.2. 非一致可积2. 应用于随机游动-鞅方法2.1. 随机游走构造的鞅2.2. 对称简单随机游走无界停时定理与随机游走 1. 无界停时定理 本节给出一致可积下鞅的无界停时定理,说明一致可积下鞅的停止过程…...
Google Pixel4手机刷机+Root+逆向环境详细教程
Google Pixel4手机刷机Root逆向环境配置详细教程 刷机工具下载 Windows10、Google Pixel4手机当前安卓10系统、adb工具、要刷的谷歌原生的Android11最新刷机包、安装google usb驱动、美版临时twrp-3.6.0_11-0-flame.img和美版永久twrp-installer-3.6.0_11-0-flame.zip、Magis…...
IT项目管理-小题计算【太原理工大学】
1.合同总价问题 问承包商的利润是? 实际利润目标利润(目标成本-实际成本)*卖方分担比例 解:10 000(100 000 - 90 000)* 0.2 12 000(元) 实际成本有时也写作最终成本,问承…...
ARP欺骗使局域网内设备断网
一、实验准备 kali系统:可使用虚拟机软件模拟 kali虚拟机镜像链接:https://www.kali.org/get-kali/#kali-virtual-machines 注意虚拟机网络适配器采用桥接模式 局域网内存在指定断网的设备 二、实验步骤 打开kali系统命令行:ctrlaltt可快…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
