差异基因散点图绘制教程
差异基因散点图绘制教程
本期教程

小杜的生信笔记,自2021年11月开始做的知识分享,主要内容是R语言绘图教程、转录组上游分析、转录组下游分析等内容。凡事在社群同学,可免费获得自2021年11月份至今全部教程,教程配备事例数据和相关代码,我们会持续更新中。
往期教程部分内容












绘图教程
导入所需R包
if (!require('ggplot2')) install.packages('ggplot2'); library('ggplot2')
if (!require('DESeq2')) install.packages('DESeq2'); library('DESeq2')
if (!require('biomaRt')) install.packages('biomaRt'); library('biomaRt')
if (!require('GEOquery')) install.packages('GEOquery'); library('GEOquery')
if (!require('vsn')) install.packages('vsn'); library('vsn')
if (!require('pheatmap')) install.packages('pheatmap'); library('pheatmap')
导入数据
cts <- read.csv("Input.data.csv",header = T, row.names = 1)
差异分析
##'@分组
sample_type = gsub(".*P7ma","Quiescent",gsub(".*P6ma","Cycling",colnames(cts)));
coldata = data.frame(row.names=colnames(cts), phenotype = sample_type ); #'@DESeq2差异分析
ddsMF <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, design = ~ phenotype)
ddsMF <- DESeq(ddsMF)
resultsNames(ddsMF) #'get normalized counts'@标准化数据
nds <- DESeqTransform( SummarizedExperiment(log2(counts(ddsMF, normalized=TRUE) + 1), colData=colData(ddsMF)) ) # this gives log2(norm_cts + 1)
vsd <- vst(ddsMF, blind=FALSE) # variance stabilization
创建data.frame数据矩阵
quiescent = rownames(coldata)[coldata$phenotype=="Quiescent"]
cycling = rownames(coldata)[coldata$phenotype=="Cycling"]
data_cts_mets_avg = data.frame("quiescent"=rowMeans(assay(vsd)[, quiescent],na.rm=T),"cycling"=rowMeans(assay(vsd)[, cycling],na.rm=T))
绘图
##'@显著性差异基因
upCQ = resCQ[!is.na(resCQ$padj) & resCQ$padj < 0.1 & resCQ$log2FoldChange > 1,]
dwCQ = resCQ[!is.na(resCQ$padj) & resCQ$padj < 0.1 & resCQ$log2FoldChange < -1,]
dim(upCQ)
dim(dwCQ)plot(data_cts_mets_avg$quiescent, data_cts_mets_avg$cycling, pch=20, xlab="mRNA expression quiescent cells (Normalized counts)", ylab="mRNA expression cycling cells (Normalized counts)",cex.lab=1.3,col=rgb(0.6,0.6,0.6,0.5));
abline(0,1,lty=2,col="black");
points(data_cts_mets_avg[rownames(upCQ),"quiescent"], data_cts_mets_avg[rownames(upCQ),"cycling"],pch=20,col=colors()[c(35)])
points(data_cts_mets_avg[rownames(dwCQ),"quiescent"], data_cts_mets_avg[rownames(dwCQ),"cycling"],pch=20,col=colors()[c(125)])
legend("topleft",legend=c("Up in Cycling","Down in Cycling"),col=colors()[c(35,125)],pch=20,inset=0.01,bty="n",cex=1.2)

若我们的教程对你有所帮助,请
点赞+收藏+转发,这是对我们最大的支持。
差异基因散点图绘制教程
往期部分文章
1. 最全WGCNA教程(替换数据即可出全部结果与图形)
-
WGCNA分析 | 全流程分析代码 | 代码一
-
WGCNA分析 | 全流程分析代码 | 代码二
-
WGCNA分析 | 全流程代码分享 | 代码三
-
WGCNA分析 | 全流程分析代码 | 代码四
-
WGCNA分析 | 全流程分析代码 | 代码五(最新版本)
2. 精美图形绘制教程
- 精美图形绘制教程
3. 转录组分析教程
-
转录组上游分析教程[零基础]
-
一个转录组上游分析流程 | Hisat2-Stringtie
4. 转录组下游分析
-
批量做差异分析及图形绘制 | 基于DESeq2差异分析
-
GO和KEGG富集分析
-
单基因GSEA富集分析
-
全基因集GSEA富集分析
小杜的生信筆記 ,主要发表或收录生物信息学教程,以及基于R分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!
相关文章:
差异基因散点图绘制教程
差异基因散点图绘制教程 本期教程 小杜的生信笔记,自2021年11月开始做的知识分享,主要内容是R语言绘图教程、转录组上游分析、转录组下游分析等内容。凡事在社群同学,可免费获得自2021年11月份至今全部教程,教程配备事例数据和相…...
Windows安装多版本MySQL
5.7 - 配置 my.ini [client] port 3307[mysql] default-character-set utf8mb4[mysqld] port 3307 server_id 1 character-set-server utf8mb4basedir "E://MySQL/mysql5.7" datadir "E://MySQL/mysql5.7/data"# 将所有表名转换为小写字母 lower_c…...
Redis7降级到Redis6如何AOF备份恢复(错的)
Redis7降级到Redis6如何AOF备份恢复(错的) 前提:从始至终开启AOF 介绍的Docker安装的Redis,不是Docker也一样,差不多 一、data目录差异 redis版本7 - /data/appendonlydir - appendonly.aof.manifest - appendo…...
通过EXCEL控制PLC启停电机的一种方法
概述 本例将介绍用微软EXCEL电子表格控制西门子S7-1200 PLC实现电机启停的一种方法。 第1步: 添加PLC设备,选择西门子S7-1214C CPU,设置IP地址:192.168.18.18,子网掩码:255.255.255.0。 第2步:…...
【GPT4O 开启多模态新时代!】
系列文章目录 GPT-4o的出现,让 AI 真正进入了全能时代,而且 OpenAI 宣布所有人免费使用! 不论你是需要写文章、听声音还是看视频,GPT-4o都能满足你的需求 文章目录 系列文章目录什么是GPT-4o?一、GPT-40 的新功能二、…...
HTTP协议及Python实现
最近的项目需要频繁在前后端之间传输数据,本篇主要介绍HTTP协议以及数据传输方法。 1 HTTP协议 1.1 http协议简介 HTTP(Hypertext Transfer Protocol)是一种用于传输超文本数据的应用层协议。它是万维网上数据交换的基础,定义了客户端和服务器之间进行通…...
【机器学习】逻辑化讲清PCA主成分分析
碎碎念:小编去年数学建模比赛的时候真的理解不了主成分分析中的“主成分”的概念!!但是,时隔两年,在机器学习领域我又行了,终于搞明白了!且看正文!再分享一个今天听到的播客中非常触…...
Vue常见的指令
Vue.js 提供了许多内置指令,这些指令可以在模板中用于处理元素的显示、行为等。以下是 Vue.js 中常见的 7 个指令及其详细代码示例: 1、v-bind:用于属性绑定,可以动态更新 HTML 属性。 html<template> <div> <img…...
【Ansible】ansible-playbook剧本
playbook 是ansible的脚本 playbook的组成 1)Tasks:任务;通过tasks 调用ansible 的模板将多个操作组织在一个playbook中运行 2)Variables:变量 3)Templates:模板 4)Handles…...
Linux的命令
; 昨天学习了七个命令,分别是:cd命令(切换目录)、pwd命令(当前目录)、mkdir命令(创建目录)、touch命令(创建文件)、date命令(显…...
No known conditions for “./lib/locale/lang/zh-cn“ entry in “element-plus“ pa
yarn的安装和卸载 npm install -g yarn npm uninstall yarn -g //yarn卸载 改用yarn卸载试试 先安装yarn npm install -g yarn 卸载掉原来的element-plus yarn remove element-plus 重新安装原有的element-plus版本 yarn add element-plus2.3.1 低版本页面引用为 i…...
实验名称:TCP 连接管理
目录 前言 TCP报文段格式 TCP建立连接 TCP释放连接 实验目的 实验原理 实验步骤 1. 启动WireShark,设置抓包状态 2. 访问指定服务器 ,通过Wireshark抓取通信数据报文 3. 分析TCP连接建立的三次握手和连接释放的四次握手过程 原始数据记录 实验…...
go语言map底层及扩容机制原理详解(上)
底层数据结构-哈希表 go语言map的底层数据结构是哈希表:通过哈希表来存储键值对,通过hash函数把键值对散列到一个个桶(bucket)中。 什么是哈希表? 在顺序结构以及平衡树中,元素与其的存储位置之间没有对应关系,因此…...
互联网职场说 | “领导找我谈话,原来是给我涨薪,但却只涨了200,还偷偷叮嘱我保密,这次只给我涨了薪”
职场中,一般当领导找你谈话时,心里总是会涌起两种心理活动:问责和表扬。不过很多人第一反应就是有点担心害怕,其次才会想有什么好事临到我了! 一位职场网友分享说,有天领导忽然找她谈话,当时心…...
Android 如何启用user版本的adb源码分析
Android调试桥(ADB, Android Debug Bridge)是一个Android命令行工具,包含在SDK 平台工具包中,adb可以用于连接Android设备,或者模拟器,实现对设备的控制,比如安装和调试应用。和Appium一样,adb也是基于C/S架…...
linux phpstudy 重启命令
[rootLinuxWeb phpstudy]# ./system/phpstudyctl restart 查看命令 1) phpstudy -start 启动小皮面板 2) phpstudy -stop 停止小皮面板 3) phpstudy -restart 重启小皮面板 4) phpstudy -status 查询面板状态 5) phpstudy -in…...
台式电脑屏幕亮度怎么调节?让你的眼睛更舒适!
在日常使用台式电脑时,调节屏幕亮度是一项常见的需求。不同的环境和个人偏好可能需要不同的亮度设置。因此,了解台式电脑屏幕亮度怎么调节是非常重要的。本文将介绍三种常见的方法,帮助您轻松调节台式电脑屏幕亮度,以满足您的需求…...
打造安全的 Linux 环境:实用配置指南
唠唠闲话 一开始接触服务器,我只是把它当博客的托管网站,源文件用 GitHub 备份,所以网站被黑了也没啥关系。但随着使用深入,网站逐渐加入我的日常工作流中,而且有了使用更多服务的需求。在这种情况下,服务…...
神经网络有哪些算法
神经网络算法是人工智能领域的重要组成部分,它通过模拟人类神经系统的结构和功能,实现对复杂问题的处理和分析。以下是对神经网络算法的详细概述,包括常见的算法和它们的特点、应用等,力求达到约2500字的篇幅。 一、神经网络算法概述 神经网络算法是一种基于人工神经元的…...
计算机网络期末试题
第一章 概述 一. 单选题(共13题,36.4分) 1. (单选题) 因特网起源于( )网络。 A. ARPANETB. EthernetC. CATVD. CERNET 我的答案: A:ARPANET;正确答案: A:ARPANET; 2.8分 2. (单选题)人们把( )年作为因特网的诞…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
