差异基因散点图绘制教程
差异基因散点图绘制教程
本期教程
小杜的生信笔记,自2021年11月开始做的知识分享,主要内容是R语言绘图教程、转录组上游分析、转录组下游分析等内容。凡事在社群同学,可免费获得自2021年11月份至今全部教程,教程配备事例数据和相关代码,我们会持续更新中。
往期教程部分内容
绘图教程
导入所需R包
if (!require('ggplot2')) install.packages('ggplot2'); library('ggplot2')
if (!require('DESeq2')) install.packages('DESeq2'); library('DESeq2')
if (!require('biomaRt')) install.packages('biomaRt'); library('biomaRt')
if (!require('GEOquery')) install.packages('GEOquery'); library('GEOquery')
if (!require('vsn')) install.packages('vsn'); library('vsn')
if (!require('pheatmap')) install.packages('pheatmap'); library('pheatmap')
导入数据
cts <- read.csv("Input.data.csv",header = T, row.names = 1)
差异分析
##'@分组
sample_type = gsub(".*P7ma","Quiescent",gsub(".*P6ma","Cycling",colnames(cts)));
coldata = data.frame(row.names=colnames(cts), phenotype = sample_type ); #'@DESeq2差异分析
ddsMF <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, design = ~ phenotype)
ddsMF <- DESeq(ddsMF)
resultsNames(ddsMF) #'get normalized counts'@标准化数据
nds <- DESeqTransform( SummarizedExperiment(log2(counts(ddsMF, normalized=TRUE) + 1), colData=colData(ddsMF)) ) # this gives log2(norm_cts + 1)
vsd <- vst(ddsMF, blind=FALSE) # variance stabilization
创建data.frame数据矩阵
quiescent = rownames(coldata)[coldata$phenotype=="Quiescent"]
cycling = rownames(coldata)[coldata$phenotype=="Cycling"]
data_cts_mets_avg = data.frame("quiescent"=rowMeans(assay(vsd)[, quiescent],na.rm=T),"cycling"=rowMeans(assay(vsd)[, cycling],na.rm=T))
绘图
##'@显著性差异基因
upCQ = resCQ[!is.na(resCQ$padj) & resCQ$padj < 0.1 & resCQ$log2FoldChange > 1,]
dwCQ = resCQ[!is.na(resCQ$padj) & resCQ$padj < 0.1 & resCQ$log2FoldChange < -1,]
dim(upCQ)
dim(dwCQ)plot(data_cts_mets_avg$quiescent, data_cts_mets_avg$cycling, pch=20, xlab="mRNA expression quiescent cells (Normalized counts)", ylab="mRNA expression cycling cells (Normalized counts)",cex.lab=1.3,col=rgb(0.6,0.6,0.6,0.5));
abline(0,1,lty=2,col="black");
points(data_cts_mets_avg[rownames(upCQ),"quiescent"], data_cts_mets_avg[rownames(upCQ),"cycling"],pch=20,col=colors()[c(35)])
points(data_cts_mets_avg[rownames(dwCQ),"quiescent"], data_cts_mets_avg[rownames(dwCQ),"cycling"],pch=20,col=colors()[c(125)])
legend("topleft",legend=c("Up in Cycling","Down in Cycling"),col=colors()[c(35,125)],pch=20,inset=0.01,bty="n",cex=1.2)
若我们的教程对你有所帮助,请
点赞+收藏+转发
,这是对我们最大的支持。
差异基因散点图绘制教程
往期部分文章
1. 最全WGCNA教程(替换数据即可出全部结果与图形)
-
WGCNA分析 | 全流程分析代码 | 代码一
-
WGCNA分析 | 全流程分析代码 | 代码二
-
WGCNA分析 | 全流程代码分享 | 代码三
-
WGCNA分析 | 全流程分析代码 | 代码四
-
WGCNA分析 | 全流程分析代码 | 代码五(最新版本)
2. 精美图形绘制教程
- 精美图形绘制教程
3. 转录组分析教程
-
转录组上游分析教程[零基础]
-
一个转录组上游分析流程 | Hisat2-Stringtie
4. 转录组下游分析
-
批量做差异分析及图形绘制 | 基于DESeq2差异分析
-
GO和KEGG富集分析
-
单基因GSEA富集分析
-
全基因集GSEA富集分析
小杜的生信筆記 ,主要发表或收录生物信息学教程,以及基于R分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!
相关文章:

差异基因散点图绘制教程
差异基因散点图绘制教程 本期教程 小杜的生信笔记,自2021年11月开始做的知识分享,主要内容是R语言绘图教程、转录组上游分析、转录组下游分析等内容。凡事在社群同学,可免费获得自2021年11月份至今全部教程,教程配备事例数据和相…...
Windows安装多版本MySQL
5.7 - 配置 my.ini [client] port 3307[mysql] default-character-set utf8mb4[mysqld] port 3307 server_id 1 character-set-server utf8mb4basedir "E://MySQL/mysql5.7" datadir "E://MySQL/mysql5.7/data"# 将所有表名转换为小写字母 lower_c…...
Redis7降级到Redis6如何AOF备份恢复(错的)
Redis7降级到Redis6如何AOF备份恢复(错的) 前提:从始至终开启AOF 介绍的Docker安装的Redis,不是Docker也一样,差不多 一、data目录差异 redis版本7 - /data/appendonlydir - appendonly.aof.manifest - appendo…...

通过EXCEL控制PLC启停电机的一种方法
概述 本例将介绍用微软EXCEL电子表格控制西门子S7-1200 PLC实现电机启停的一种方法。 第1步: 添加PLC设备,选择西门子S7-1214C CPU,设置IP地址:192.168.18.18,子网掩码:255.255.255.0。 第2步:…...

【GPT4O 开启多模态新时代!】
系列文章目录 GPT-4o的出现,让 AI 真正进入了全能时代,而且 OpenAI 宣布所有人免费使用! 不论你是需要写文章、听声音还是看视频,GPT-4o都能满足你的需求 文章目录 系列文章目录什么是GPT-4o?一、GPT-40 的新功能二、…...
HTTP协议及Python实现
最近的项目需要频繁在前后端之间传输数据,本篇主要介绍HTTP协议以及数据传输方法。 1 HTTP协议 1.1 http协议简介 HTTP(Hypertext Transfer Protocol)是一种用于传输超文本数据的应用层协议。它是万维网上数据交换的基础,定义了客户端和服务器之间进行通…...
【机器学习】逻辑化讲清PCA主成分分析
碎碎念:小编去年数学建模比赛的时候真的理解不了主成分分析中的“主成分”的概念!!但是,时隔两年,在机器学习领域我又行了,终于搞明白了!且看正文!再分享一个今天听到的播客中非常触…...
Vue常见的指令
Vue.js 提供了许多内置指令,这些指令可以在模板中用于处理元素的显示、行为等。以下是 Vue.js 中常见的 7 个指令及其详细代码示例: 1、v-bind:用于属性绑定,可以动态更新 HTML 属性。 html<template> <div> <img…...

【Ansible】ansible-playbook剧本
playbook 是ansible的脚本 playbook的组成 1)Tasks:任务;通过tasks 调用ansible 的模板将多个操作组织在一个playbook中运行 2)Variables:变量 3)Templates:模板 4)Handles…...

Linux的命令
; 昨天学习了七个命令,分别是:cd命令(切换目录)、pwd命令(当前目录)、mkdir命令(创建目录)、touch命令(创建文件)、date命令(显…...
No known conditions for “./lib/locale/lang/zh-cn“ entry in “element-plus“ pa
yarn的安装和卸载 npm install -g yarn npm uninstall yarn -g //yarn卸载 改用yarn卸载试试 先安装yarn npm install -g yarn 卸载掉原来的element-plus yarn remove element-plus 重新安装原有的element-plus版本 yarn add element-plus2.3.1 低版本页面引用为 i…...

实验名称:TCP 连接管理
目录 前言 TCP报文段格式 TCP建立连接 TCP释放连接 实验目的 实验原理 实验步骤 1. 启动WireShark,设置抓包状态 2. 访问指定服务器 ,通过Wireshark抓取通信数据报文 3. 分析TCP连接建立的三次握手和连接释放的四次握手过程 原始数据记录 实验…...
go语言map底层及扩容机制原理详解(上)
底层数据结构-哈希表 go语言map的底层数据结构是哈希表:通过哈希表来存储键值对,通过hash函数把键值对散列到一个个桶(bucket)中。 什么是哈希表? 在顺序结构以及平衡树中,元素与其的存储位置之间没有对应关系,因此…...

互联网职场说 | “领导找我谈话,原来是给我涨薪,但却只涨了200,还偷偷叮嘱我保密,这次只给我涨了薪”
职场中,一般当领导找你谈话时,心里总是会涌起两种心理活动:问责和表扬。不过很多人第一反应就是有点担心害怕,其次才会想有什么好事临到我了! 一位职场网友分享说,有天领导忽然找她谈话,当时心…...

Android 如何启用user版本的adb源码分析
Android调试桥(ADB, Android Debug Bridge)是一个Android命令行工具,包含在SDK 平台工具包中,adb可以用于连接Android设备,或者模拟器,实现对设备的控制,比如安装和调试应用。和Appium一样,adb也是基于C/S架…...

linux phpstudy 重启命令
[rootLinuxWeb phpstudy]# ./system/phpstudyctl restart 查看命令 1) phpstudy -start 启动小皮面板 2) phpstudy -stop 停止小皮面板 3) phpstudy -restart 重启小皮面板 4) phpstudy -status 查询面板状态 5) phpstudy -in…...

台式电脑屏幕亮度怎么调节?让你的眼睛更舒适!
在日常使用台式电脑时,调节屏幕亮度是一项常见的需求。不同的环境和个人偏好可能需要不同的亮度设置。因此,了解台式电脑屏幕亮度怎么调节是非常重要的。本文将介绍三种常见的方法,帮助您轻松调节台式电脑屏幕亮度,以满足您的需求…...
打造安全的 Linux 环境:实用配置指南
唠唠闲话 一开始接触服务器,我只是把它当博客的托管网站,源文件用 GitHub 备份,所以网站被黑了也没啥关系。但随着使用深入,网站逐渐加入我的日常工作流中,而且有了使用更多服务的需求。在这种情况下,服务…...
神经网络有哪些算法
神经网络算法是人工智能领域的重要组成部分,它通过模拟人类神经系统的结构和功能,实现对复杂问题的处理和分析。以下是对神经网络算法的详细概述,包括常见的算法和它们的特点、应用等,力求达到约2500字的篇幅。 一、神经网络算法概述 神经网络算法是一种基于人工神经元的…...
计算机网络期末试题
第一章 概述 一. 单选题(共13题,36.4分) 1. (单选题) 因特网起源于( )网络。 A. ARPANETB. EthernetC. CATVD. CERNET 我的答案: A:ARPANET;正确答案: A:ARPANET; 2.8分 2. (单选题)人们把( )年作为因特网的诞…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...

MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

EEG-fNIRS联合成像在跨频率耦合研究中的创新应用
摘要 神经影像技术对医学科学产生了深远的影响,推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下,基于神经血管耦合现象的多模态神经影像方法,通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里,本研…...

基于Python的气象数据分析及可视化研究
目录 一.🦁前言二.🦁开源代码与组件使用情况说明三.🦁核心功能1. ✅算法设计2. ✅PyEcharts库3. ✅Flask框架4. ✅爬虫5. ✅部署项目 四.🦁演示效果1. 管理员模块1.1 用户管理 2. 用户模块2.1 登录系统2.2 查看实时数据2.3 查看天…...

华为云Flexus+DeepSeek征文 | 基于Dify构建具备联网搜索能力的知识库问答助手
华为云FlexusDeepSeek征文 | 基于Dify构建具备联网搜索能力的知识库问答助手 一、构建知识库问答助手引言二、构建知识库问答助手环境2.1 基于FlexusX实例的Dify平台2.2 基于MaaS的模型API商用服务 三、构建知识库问答助手实战3.1 配置Dify环境3.2 创建知识库问答助手3.3 使用知…...
C/Python/Go示例 | Socket Programing与RPC
Socket Programming介绍 Computer networking这个领域围绕着两台电脑或者同一台电脑内的不同进程之间的数据传输和信息交流,会涉及到许多有意思的话题,诸如怎么确保对方能收到信息,怎么应对数据丢失、被污染或者顺序混乱,怎么提高…...