当前位置: 首页 > news >正文

Autodl服务器中Faster-rcnn(jwyang)训练自己数据集(二)

前言

上一章中完成了faster-rcnn(jwyang版本)的复现,本节将在此基础进一步训练自己的数据集~

项目地址:https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0
复现环境:autodl服务器+python3.6+cuda11.3+Ubuntu20.04+Pytorch1.10.0

往期回顾

Autodl服务器中Faster-rcnn(jwyang)复现(一)

目录

  • 一、数据准备
  • 二、修改源代码
  • 三、开始训练
  • 四、开始测试
  • 五、开始推理

一、数据准备

第一步:查看VOC数据集得文件夹tree结构

VOCdevkit2007
└── VOC2007├── Annotations├── ImageSets│   └── Main│       ├── test.txt│       ├── train.txt│       ├── trainval.txt│       └── val.txt└── JPEGImages

其中Annotations内放xml标注文件,JPEGImages内放图片,ImageSets/Main/内的四个txt文件分别是测试集、训练集、训练验证集、验证集。自己数据集依然采用VOC2007数据集的类。

第二步:制作自己数据集

(1)把原来的图片删掉,位置是:

/root/faster-rcnn/data/VOCdevkit2007/VOC2007/JPEGImages

将自己数据集的图片上传至JPEGImages

(2)更改xml文件中属性值

用这个代码可以任意改变xml里的属性值,比如你想把xml文件中类别名称改变,或把图片名称、路径等值改变,参考以下代码

#这里只修改folder部分
import os
import os.path
import xml.dom.minidompath = "/home/zhangxin/faster-rcnn.pytorch/data/VOCdevkit/VOC2007/Annotations/"
files = os.listdir(path)  #得到文件夹下所有文件名称for xmlFile in files: #遍历文件夹if not os.path.isdir(xmlFile): #判断是否是文件夹,不是文件夹才打开print(xmlFile)#将获取的xml文件名送入到dom解析dom = xml.dom.minidom.parse(os.path.join(path, xmlFile)) #输入xml文件具体路径root = dom.documentElement#获取标签<name>以及<folder>的值name = root.getElementsByTagName('name')folder = root.getElementsByTagName('folder')#对每个xml文件的多个同样的属性值进行修改。此处将每一个<folder>属性修改为VOC2007for i in range(len(folder)):  print(folder[i].firstChild.data)folder[i].firstChild.data = 'VOC2007'print(folder[i].firstChild.data)#将属性存储至xml文件中with open(os.path.join(path, xmlFile),'w') as fh:dom.writexml(fh)print('已写入')

这里修改folder部分,与VOC一样
在这里插入图片描述

完成后同样把原来的xml删掉,位置是:

/root/faster-rcnn/data/VOCdevkit2007/VOC2007/Annotations

将自己数据集的图片上传至Annotations

(3)自己制作trainval.txt,里面存储自己的待训练图片名称,记住不要带.jpg后缀,代码如下:

# !/usr/bin/python
# -*- coding: utf-8 -*-
import os
import random  trainval_percent = 0.8  #trainval占比例多少
train_percent = 0.7  #test数据集占比例多少
xmlfilepath = '/root/faster-rcnn/data/VOCdevkit2007/VOC2007/Annotations/'  
txtsavepath = '/root/faster-rcnn/data/VOCdevkit2007/VOC2007/ImageSets/Main/'  
total_xml = os.listdir(xmlfilepath)  num=len(total_xml)  
list=range(num)  
tv=int(num*trainval_percent)  
tr=int(tv*train_percent)  
trainval= random.sample(list,tv)  
train=random.sample(trainval,tr)  ftrainval = open('/root/faster-rcnn/data/VOCdevkit2007/VOC2007/ImageSets/Main/trainval.txt', 'w')  
ftest = open('/root/faster-rcnn/data/VOCdevkit2007/VOC2007/ImageSets/Main/test.txt', 'w')  
ftrain = open('/root/faster-rcnn/data/VOCdevkit2007/VOC2007/ImageSets/Main/train.txt', 'w')  
fval = open('/root/faster-rcnn/data/VOCdevkit2007/VOC2007/ImageSets/Main/val.txt', 'w')  for i  in list:  name=total_xml[i][:-4]+'\n'  if i in trainval:  ftrainval.write(name)  if i in train:  ftrain.write(name)  else:  fval.write(name)  else:  ftest.write(name)  ftrainval.close()  
ftrain.close()  
fval.close()  
ftest .close()  

生成结果:

在这里插入图片描述

二、修改源代码

第一步:在lib\datasets\pascal_voc.py中更改self._classes中的类别,添加自己的类

在这里插入图片描述

三、开始训练

训练之前一定要激活自己创建的my-env虚拟环境

conda activate my-env

参考:Autodl服务器中Faster-rcnn(jwyang)复现

CUDA_VISIBLE_DEVICES=0 python trainval_net.py \--dataset pascal_voc --net vgg16 \--bs 4 --nw 0 \--lr 0.002 \--cuda
  • 报错1
    在这里插入图片描述
    原因:在训练原数据集VOC时,图像数量是5964张(进行了数据增强),这时会保存训练信息至缓存中,文件路径为:/home/mw/faster-rcnn/data/cache/voc_2007_trainval_gt_roidb.pkl
    解决:在重新训练新数据集的时候,会读取这个缓存配置,以加快训练,那么此时就入坑了,我的新集合只有994张,所以训练时读的缓存里,需要读的图像还是原来那5964张,那势必会找不到这5964张图像,所以要做的就是,把这个缓存文件voc_2007_trainval_gt_roidb.pkl删除

  • 报错2
    在这里插入图片描述
    解决过程:https://blog.csdn.net/xzzppp/article/details/52036794

跑通如下:

在这里插入图片描述

四、开始测试

python test_net.py --dataset pascal_voc --net vgg16 --checksession 1 --checkepoch 3 --checkpoint 2384  --cuda

在这里插入图片描述

解决:与上述相似,把这个缓存文件/home/mw/faster-rcnn/data/cache/voc_2007_test_gt_roidb.pkl删除

效果如下:

在这里插入图片描述
在VOC上12个class的mAP为83.4%

五、开始推理

第一步:修改demo.py中pascal_classes类别

在这里插入图片描述

第二步:把几张测试图片放到images中

在这里插入图片描述

第三步:运行demo.py

python demo.py --net vgg16  --checksession 1  --checkepoch 3 --checkpoint 2384 --cuda --load_dir models

推理结果如下:

在这里插入图片描述

好了,到这一步关于faster-rcnn训练自己的数据集就结束了,完结撒花~

相关文章:

Autodl服务器中Faster-rcnn(jwyang)训练自己数据集(二)

前言 上一章中完成了faster-rcnn(jwyang版本)的复现&#xff0c;本节将在此基础进一步训练自己的数据集~ 项目地址&#xff1a;https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0 复现环境&#xff1a;autodl服务器python3.6cuda11.3Ubuntu20.04Pytorch1.10.0…...

安卓手机文件误删或丢失?教你快速找回的方法!

概括 有时我们可能会错误地删除Android设备上的重要文件。更疯狂的是&#xff0c;Android 手机上的文件一夜之间就消失了&#xff0c;我们不知道为什么。我们很遗憾、很恼火&#xff0c;但又不知道。然而&#xff0c;现在学习如何从Android手机恢复已删除的文件已经为时已晚&a…...

C语言 | Leetcode C语言题解之第108题将有序数组转换为二叉搜索树

题目&#xff1a; 题解&#xff1a; struct TreeNode* helper(int* nums, int left, int right) {if (left > right) {return NULL;}// 选择任意一个中间位置数字作为根节点int mid (left right rand() % 2) / 2;struct TreeNode* root (struct TreeNode*)malloc(sizeo…...

关于在企业环境中中间人攻击(MITM)可行性研究的报告

这份文件是一篇关于在企业环境中中间人攻击&#xff08;MITM&#xff09;可行性研究的报告&#xff0c;由Nobel Ang和Koh Chuen Hia撰写。 以下是其核心内容的概述&#xff1a; 标题&#xff1a; 研究在企业环境中中间人攻击的可行性 作者&#xff1a; Nobel Ang&#xff08…...

GitHub Actions 自动部署 AWS Lambda

在现代软件开发中,持续集成和持续部署(CI/CD)已经成为必不可少的一部分。借助 GitHub Actions 这个强大的工具,我们可以轻松地实现将代码自动部署到 AWS Lambda 的流程。 在本文中,我们将介绍如何使用 GitHub Actions 将代码部署到 AWS Lambda。我们将涵盖以下步骤: 设置 A…...

【NOIP2013普及组复赛】题4:车站分级

题4&#xff1a;车站分级 【题目描述】 一条单向的铁路线上&#xff0c;依次有编号为 1 , 2 , … , n 1,2,…,n 1,2,…,n 的 n n n 个火车站。每个火车站都有一个级别&#xff0c;最低为 1 1 1 级。现有若干趟车次在这条线路上行驶&#xff0c;每一趟都满足如下要求&#…...

el-table 表格拖拽 + 表头可修改 + 宽度自定义

el-table 表格拖拽 表头可修改 宽度自定义 宽度自定义 header-dragend"headerdragend"操作之后获取最后的宽度 headerdragend(newWidth, oldWidth, column, event) {// 获取当前拖动的是第几个&#xff0c;方便后续检测 DOM 是否已更新var currentColIndex this.t…...

Google发布的CAT3D,在1分钟内,能够从任意数量的真实或生成的图像创建3D场景。

给定任意数量的输入图像&#xff0c;使用以这些图像为条件的多视图扩散模型来生成场景的新视图。生成的视图被输入到强大的 3D 重建管道&#xff0c;生成可以交互渲染的 3D 表示。总处理时间&#xff08;包括视图生成和 3D 重建&#xff09;仅需一分钟。 相关链接 论文&#x…...

基于Matlab实现声纹识别系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景与意义 声纹识别&#xff0c;也称为说话人识别&#xff0c;是一种通过声音判别说话人身份的生物识别技…...

【人工智能项目】小车障碍物识别与模型训练(完整工程资料源码)

实物演示效果: 一、绪论: 1.1 设计背景 小车障碍物识别与模型训练的设计背景通常涉及以下几个方面: 随着自动驾驶技术的发展,小车(如无人驾驶汽车、机器人等)需要能够在复杂的环境中自主导航。障碍物识别是实现这一目标的关键技术之一,它允许小车检测并避开路上的障碍物…...

#05【面试问题整理】嵌入式软件工程师

前言 本系列博客主要记录有关嵌入式方面的面试重点知识,本系列已经更新的篇目有如下: ​ 1.1进程线程的基本概念 1.2 并发,同步,异步,互斥,阻塞,非阻塞的理解 1.3 孤儿进程、僵尸进程、守护进程的概念 【本篇】5.1 Linux内核相关 6.0 单片机常见面试题 内容如有错误请在…...

同旺科技 FLUKE ADPT 隔离版发布 ---- 3

所需设备&#xff1a; 1、FLUKE ADPT 隔离版 内附链接&#xff1b; 应用于&#xff1a;福禄克Fluke 12E / 15BMax / 17B Max / 101 / 106 / 107 应用于&#xff1a;福禄克Fluke 15B / 17B / 18B 总体连接&#xff1a; 连接线&#xff0c;根据自己实际需求而定&#xff1b; …...

探索 JavaScript 新增声明命令与解构赋值的魅力:从 ES5 迈向 ES6

个人主页&#xff1a;学习前端的小z 个人专栏&#xff1a;JavaScript 精粹 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结&#xff0c;欢迎大家在评论区交流讨论&#xff01; ES5、ES6介绍 文章目录 &#x1f4af;声明命令 let、const&#x1f35f;1 let声明符&a…...

HTML5 历史、地理位置处理、全屏处理

目录 历史HistoryAPI地理位置处理GeolocationAPI全屏处理FullscreenAPIHistoryAPI window.history 对象 window.history 是浏览器提供的一个内置对象,它提供了对浏览器历史记录的访问和操作能力。通过这个对象,开发者可以实现无刷新页面跳转、添加新的浏览历史条目等,从而提…...

打印机驱动程序安装后位置以及注册表中的位置

文件系统中的位置 驱动程序文件&#xff1a;通常位于以下目录&#xff1a; C:\Windows\System32\spool\driversC:\Windows\System32\DriverStore\FileRepository 打印机配置文件&#xff1a;这些文件存储了特定打印机的配置信息&#xff1a; C:\Windows\System32\spool\PRINTER…...

oracle数据库解析过高分析

解析非常高&#xff0c;通过时间模型可以看到解析占比非常高 解析大致可以分为硬解析&#xff08; hard parse&#xff09;、软解析&#xff08; soft parse&#xff09;和软软解析&#xff08; soft soft parse&#xff09;。如&#xff0c;执行一条 SQL 的时候&#xff0c;如…...

Python解析网页-XPath

目录 1、什么是XPath 2、安装配置 3、XPath常用规则 4、快速入门 5、浏览器XPath工具 1.什么是XPath XPath&#xff08;XML Path Language&#xff09;是一种用于在XML文档中定位和选择节点的语言。 它是W3C&#xff08;World Wide Web Consortium&#xff09;定义的一种标…...

Vue 3入门指南

title: Vue 3入门指南 date: 2024/5/23 19:37:34 updated: 2024/5/23 19:37:34 categories: 前端开发 tags: 框架对比环境搭建基础语法组件开发响应式系统状态管理路由配置 第1章&#xff1a;Vue 3简介 1.1 Vue.js的历史与发展 Vue.js由前谷歌工程师尤雨溪&#xff08;Eva…...

Arcpy安装和环境配置

一、前言 ArcPy 是一个以成功的arcgisscripting 模块为基础并继承了arcgisscripting 功能进而构建而成的站点包。目的是为以实用高效的方式通过 Python 执行地理数据分析、数据转换、数据管理和地图自动化创建基础。该包提供了丰富纯正的 Python 体验&#xff0c;具有代码自动…...

Swagger2 和 Swagger3 的不同

Swagger2 和 Swagger3 的不同 SpringBoot 整合 Swagger3 和 Swagger2 的主要区别如下&#xff1a; 区别一&#xff1a;引入不同的依赖 如果使用的是 Swagger 3 <dependency><groupId>io.springfox</groupId><artifactId>springfox-boot-starter<…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践

前言&#xff1a;本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中&#xff0c;跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南&#xff0c;你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案&#xff0c;并结合内网…...