当前位置: 首页 > news >正文

day 38 435.无重叠区间 763.划分字母区间 56. 合并区间 738.单调递增的数字 968.监控二叉树

435.无重叠区间

思路

为了使区间尽可能的重叠所以排序来使区间尽量的重叠,使用左边界排序来统计重叠区间的个数与452. 用最少数量的箭引爆气球恰好相反。

代码

class Solution {public int eraseOverlapIntervals(int[][] intervals) {Arrays.sort(intervals,(a,b)->Integer.compare(a[0],b[0]));int count = 0;for (int i = 1; i < intervals.length; i++) {if(intervals[i-1][1] > intervals[i][0]){count++;intervals[i][1] = Math.min(intervals[i-1][1],intervals[i][1]);}}return  count;}
}

763.划分字母区间

思路

首先想到了回溯但是使用回溯依然没有思路,在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。

可以分为如下两步:

  • 统计每一个字符最后出现的位置
  • 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点

代码

class Solution {public List<Integer> partitionLabels(String s) {List<Integer> list = new LinkedList<>();int [] hash = new int[27];char [] chars = s.toCharArray();for (int i = 0; i < chars.length; i++) {hash[chars[i] - 'a'] = i;}int left = 0,right = 0 ;for (int i = 0; i < chars.length; i++) {right = Math.max(right , hash[chars[i] - 'a']);if(i == right){list.add(right -left +1);left = i+1;}}return list;}
}

56. 合并区间

思路

本题的本质其实还是判断重叠区间问题。452. 用最少数量的箭引爆气球 (opens new window)和 435. 无重叠区间都是判断区间重叠,区别就是判断区间重叠后的逻辑,本题是判断区间重贴后要进行区间合并。

代码

class Solution {public int[][] merge(int[][] intervals) {LinkedList<int[]> res = new LinkedList<>();Arrays.sort(intervals, (o1, o2) -> Integer.compare(o1[0], o2[0]));res.add(intervals[0]);for (int i = 1; i < intervals.length; i++) {if (intervals[i][0] <= res.getLast()[1]) {int start = res.getLast()[0];int end = Math.max(intervals[i][1], res.getLast()[1]);res.removeLast();res.add(new int[]{start, end});}else {res.add(intervals[i]);}}return res.toArray(new int[res.size()][]);}
}

738.单调递增的数字

思路

贪心算法

例如98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。

此时是从前向后遍历还是从后向前遍历呢?

从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。

数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。

那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299

class Solution {public int monotoneIncreasingDigits(int n) {String s = String.valueOf(n);char[] chars = s.toCharArray();int start = s.length();for (int i = s.length() - 2; i >= 0; i--) {if (chars[i] > chars[i + 1]) {chars[i]--;start = i+1;}}for (int i = start; i < s.length(); i++) {chars[i] = '9';}return Integer.parseInt(String.valueOf(chars));}
}

968.监控二叉树

思路

题目示例中的摄像头都没有放在叶子节点上!这是很重要的一个线索,摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。

所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。

为什么不从头结点开始看起呢,为啥要从叶子节点看呢?

因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。(也算是一个贪心)

局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,

整体最优:全部摄像头数量所用最少!

思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。

在二叉树中如何从低向高推导呢?

可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。左孩子的返回值,右孩子的返回值,即left 和 right, 以后推导中间节点的状态

难点

每个节点可能有几种状态:

有如下三种:

  • 该节点无覆盖(无摄像头)
  • 本节点有摄像头
  • 本节点有覆盖(无摄像头)

空节点的状态只能是有覆盖

为了让摄像头数量最少,我们要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。

那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。

主要有如下四类情况:

  • 情况1:左右节点都有覆盖

  • 情况2:左右节点至少有一个无覆盖的情况:中间节点(父节点)应该放摄像头

如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:

  • 情况3:左右节点至少有一个有摄像头:左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)
  • 情况4:头结点没有覆盖

代码

class Solution {int result = 0 ;public int minCameraCover(TreeNode root) {if(traversal(root) == 0){result++;}return result;}/**节点的状态值:0 表示无覆盖1 表示 有摄像头2 表示有覆盖后序遍历,根据左右节点的情况,来判读 自己的状态*/public int traversal(TreeNode root){if(root == null) return 2;int left = traversal(root.left);int right = traversal(root.right);if(left==2 && right==2) return 0;if(left == 0 || right ==0){result++;return 1;}if(left == 1 || right ==1){return 2;}return -1;}
}

相关文章:

day 38 435.无重叠区间 763.划分字母区间 56. 合并区间 738.单调递增的数字 968.监控二叉树

435.无重叠区间 思路 为了使区间尽可能的重叠所以排序来使区间尽量的重叠&#xff0c;使用左边界排序来统计重叠区间的个数与452. 用最少数量的箭引爆气球恰好相反。 代码 class Solution {public int eraseOverlapIntervals(int[][] intervals) {Arrays.sort(intervals,(a,…...

ssm/springoot养老院问诊服务预约系统_96316老年人服务系统

2.管理员&#xff1a; &#xff08;1&#xff09;登入注册页面&#xff1a;管理员进行操作时需要是已注册登入的 &#xff08;2&#xff09;权限管理&#xff1a;管理员登入后可以运用权限进行相应的操作管理。 &#xff08;3&#xff09;用户管理&#xff1a;对用户进行删除、…...

WordPress插件优化对提升性能有多大影响?

WordPress插件优化对提升性能的影响可以是非常显著的。插件是WordPress平台的一个重要组成部分&#xff0c;它们可以增强网站的功能和定制性。然而&#xff0c;如果插件没有经过优化&#xff0c;它们可能会成为网站性能的瓶颈。 通过优化插件&#xff0c;可以减少对服务器资源…...

Servlet的response对象

目录 HTTP响应报文协议 reponse继承体系 reponse的方法 响应行 public void setStatus(int sc) 响应头 public void setHeader(String name, String value) 响应体 public java.io.PrintWriter getWriter() public ServletOutputStream getOutputStream() 请求重定…...

Unity射击游戏开发教程:(20)增加护盾强度

在本文中,我们将增强护盾,使其在受到超过 1 次攻击后才会被禁用。 Player 脚本具有 Shield PowerUp 方法,我们需要调整盾牌在被摧毁之前可以承受的数量,因此我们将声明一个 int 变量来设置盾牌可以承受的击中数量。...

初识C语言——第二十八天

代码练习1&#xff1a; 用函数的方式实现9*9乘法表 void print_table(int n) {int i 0;int j 0;for (i 1; i< n; i){for (j 1; j< i; j){printf("%d*%d%-3d ", i, j, i * j);}printf("\n");}}int main() {int n 0;scanf("%d", &a…...

Android NDK系列(三)输入事件分发到Native层的流程

在Android NDK系列(一)手动搭建Native Project 创建的Native工程中,是可以接收输入事件的,只需在android_main中注册输入事件的处理函数,当触摸屏幕后,handleInputEvent函数便会调用,代码如下。 static int32_t handleInputEvent(struct android_app* app, AInputEvent…...

Kafka之【生产消息】

消息&#xff08;Record&#xff09; 在kafka中传递的数据我们称之为消息&#xff08;message&#xff09;或记录(record)&#xff0c;所以Kafka发送数据前&#xff0c;需要将待发送的数据封装为指定的数据模型&#xff1a; 相关属性必须在构建数据模型时指定&#xff0c;其中…...

asp.net core接入prometheus

安装prometheus和Grafana 参考之前的文章->安装prometheus和Grafana教程 源代码 dotnet源代码 新建.net core7 web项目 修改Program.cs using Prometheus;namespace PrometheusStu01;public class Program {public static void Main(string[] args){var builder We…...

C++ 变量类型与转换

C 变量类型与转换 文章目录 C 变量类型与转换变量int_tsize_t与ssize_tpid_ttime_t typenametypeid关键字类型转换编译期类型转换std::static_cast注意事项运行时类型转换std::dynamic_cast 变量 int_t 它是通过typedef定义的&#xff0c;而不是一种新的数据类型。 - int8_t…...

【杂七杂八】Huawei Gt runner手表系统降级

文章目录 Step1&#xff1a;下载安装修改版华为运动与健康Step2&#xff1a;在APP里进行配置Step3&#xff1a;更新固件(时间会很长) 目前在使用用鸿蒙4 111版本的手表系统&#xff0c;但是感觉睡眠检测和运动心率检测一言难尽&#xff0c;于是想到是否能回退到以前的版本&…...

FMEA做不出来的原因究竟是什么?——FMEA软件

免费试用FMEA软件-免费版-SunFMEA FMEA&#xff08;Failure Mode and Effects Analysis&#xff09;即故障模式与影响分析&#xff0c;是一种旨在识别并预防潜在问题的方法。然而&#xff0c;尽管其重要性被广泛认知&#xff0c;但在实际应用中&#xff0c;却常常遇到FMEA难以…...

pandas ExcelWriter写excel报错openpyxl.utils.exceptions.IllegalCharacterError

一直使用pandas写excel&#xff0c;本次写的数据有大字段&#xff0c;每次写到该字段就报错&#xff0c;代码如下&#xff1a; with pd.ExcelWriter(r".\提数_20240523\tq_type3_doc.xlsx", engineopenpyxl) as writer: df.to_excel(writer,indexFalse, sheet_namesh…...

Golang创建文件夹

方法 package zdpgo_fileimport ("os" )// AddDir 创建文件夹 func AddDir(dir string) error {if !IsExist(dir) {return os.MkdirAll(dir, os.ModePerm)}return nil }测试 package zdpgo_fileimport "testing"func TestAddDir(t *testing.T) {data : […...

头歌OpenGauss数据库-I.复杂查询第5关:至少学了某位学生(Oliver)所学的全部课程的学生

本关任务:根据提供的表和数据,查询至少学了Oliver同学所学的全部课程的其他同学的信息(学号s_id,姓名`s_name)。 student表数据: s_ids_names_sex01Mia女02Riley男03Aria女04Lucas女05Oliver男06Caden男07Lily女08Jacob男course表数据: c_idc_namet_id01Chinese0202Math…...

【数据结构】哈夫曼树和哈夫曼编码

一、哈夫曼树 1.1 哈夫曼树的概念 给定一个序列&#xff0c;将序列中的所有元素作为叶子节点构建一棵二叉树&#xff0c;并使这棵树的带权路径长度最小&#xff0c;那么我们就得到了一棵哈夫曼树&#xff08;又称最优二叉树&#xff09; 接下来是名词解释&#xff1a; 权&a…...

深入探索微软Edge:领略新一代浏览器的无限可能

深入探索微软Edge&#xff1a;领略新一代浏览器的无限可能 在当今数字化时代&#xff0c;网络浏览器已经成为我们日常生活中不可或缺的一部分。而随着技术的不断进步&#xff0c;浏览器的功能和性能也在不断提升。微软Edge作为微软推出的全新一代浏览器&#xff0c;引领着浏览…...

JavaScript表达式和运算符

表达式 表达式一般由常量、变量、运算符、子表达式构成。最简单的表达式可以是一个简单的值。常量或变量。例&#xff1a;var a10 运算符 运算符一般用符号来表示&#xff0c;也有些使用关键字表示。运算符由3中类型 1.一元运算符&#xff1a;一个运算符能够结合一个操作数&…...

爬虫实训案例:中国大学排名

近一个月左右的时间学习爬虫&#xff0c;在用所积累的知识爬取了《中国大学排名》这个网站&#xff0c;爬取的内容虽然只是可见的文本&#xff0c;但对于初学者来说是一个很好的练习。在爬取的过程中&#xff0c;通过请求数据、解析内容、提取文本、存储数据等几个重要的内容入…...

C++ IO流

C标准IO流 使用cout进行标准输出&#xff0c;即数据从内存流向控制台(显示器)使用cin进行标准输入&#xff0c;即数据通过键盘输入到程序中使用cerr进行标准错误的输出使用clog进行日志的输出 C文件IO流 文件流对象 ofstream&#xff1a;只写 ofstream 是 C 中用于输出文件…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...

React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构

React 实战项目&#xff1a;微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇&#xff01;在前 29 篇文章中&#xff0c;我们从 React 的基础概念逐步深入到高级技巧&#xff0c;涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...

结构化文件管理实战:实现目录自动创建与归类

手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题&#xff0c;进而引发后续程序异常。使用工具进行标准化操作&#xff0c;能有效降低出错概率。 需要快速整理大量文件的技术用户而言&#xff0c;这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB&#xff0c;…...

深度解析:etcd 在 Milvus 向量数据库中的关键作用

目录 &#x1f680; 深度解析&#xff1a;etcd 在 Milvus 向量数据库中的关键作用 &#x1f4a1; 什么是 etcd&#xff1f; &#x1f9e0; Milvus 架构简介 &#x1f4e6; etcd 在 Milvus 中的核心作用 &#x1f527; 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...

python打卡第47天

昨天代码中注意力热图的部分顺移至今天 知识点回顾&#xff1a; 热力图 作业&#xff1a;对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图&#xff0c;展示模…...