当前位置: 首页 > news >正文

线性回归模型之套索回归

概述

本案例是基于之前的岭回归的案例的。之前案例的完整代码如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge, LinearRegression
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_diabetes
from sklearn.model_selection import learning_curve, KFolddef plot_learning_curve(est, X, y):# 将数据拆分20次用来对模型进行评分training_set_size, train_scores, test_scores = learning_curve(est,X,y,train_sizes=np.linspace(.1, 1, 20),cv=KFold(20, shuffle=True, random_state=1))# 获取模型名称estimator_name = est.__class__.__name__# 绘制模型评分line = plt.plot(training_set_size, train_scores.mean(axis=1), "--", label="training " + estimator_name)plt.plot(training_set_size, test_scores.mean(axis=1), "-", label="test " + estimator_name, c=line[0].get_color())plt.xlabel("Training set size")plt.ylabel("Score")plt.ylim(0, 1.1)# 加载数据
data = load_diabetes()
X, y = data.data, data.target# 绘制图形
plot_learning_curve(Ridge(alpha=1), X, y)
plot_learning_curve(LinearRegression(), X, y)
plt.legend(loc=(0, 1.05), ncol=2, fontsize=11)
plt.show()

输出结果如下:
在这里插入图片描述

套索回归的基本用法

引入套索回归,还是基于糖尿病数据,进行模型的训练。

from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_diabetes
import numpy as np# 加载数据
data = load_diabetes()
X, y = data.data, data.target# 切割数据
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=8)# 使用套索回归拟合数据
reg = Lasso().fit(X_train, y_train)# 查看结果
print(reg.score(X_train, y_train))
print(reg.score(X_test, y_test))
print(np.sum(reg.coef_ != 0))

输出结果如下:

0.3624222204154225
0.36561940472905163
3

调整套索回归的参数

上面的案例中,评分只有0.3,很低,我们可以试试调低alpha的值试试。

from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_diabetes
import numpy as np# 加载数据
data = load_diabetes()
X, y = data.data, data.target# 切割数据
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=8)# 使用套索回归拟合数据
reg = Lasso(alpha=0.1, max_iter=100000).fit(X_train, y_train)# 查看结果
print(reg.score(X_train, y_train))
print(reg.score(X_test, y_test))
print(np.sum(reg.coef_ != 0))

输出如下:

0.5194790915052719
0.4799480078849704
7

可以发现,评分有所增长,10个特征中,这里用到了7个特征。

过拟合问题

如果我们把alpha的值设置得太低,就相当于把正则化的效果去除了,模型就会出现过拟合问题。

比如,我们将alpha设置为0.0001:

from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_diabetes
import numpy as np# 加载数据
data = load_diabetes()
X, y = data.data, data.target# 切割数据
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=8)# 使用套索回归拟合数据
reg = Lasso(alpha=0.0001, max_iter=100000).fit(X_train, y_train)# 查看结果
print(reg.score(X_train, y_train))
print(reg.score(X_test, y_test))
print(np.sum(reg.coef_ != 0))

输出如下:

0.5303797950529495
0.4594491492143349
10

从结果来看,我们用到了全部特征,而且模型在测试集上的分数要稍微低于alpha等于0.1的时候的得分,说明降低alpha的数值会让模型倾向于出现过拟合的现象。

套索回归和岭回归的对比

我们采用图像的形式,来对比不同alpha的值的时候,套索回归和岭回归的系数。

from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_diabetes
import numpy as np# 加载数据
data = load_diabetes()
X, y = data.data, data.target# 切割数据
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=8)# 使用套索回归拟合数据并绘图
reg = Lasso(alpha=1, max_iter=100000).fit(X_train, y_train)
plt.plot(reg.coef_, "s", label="Lasso alphat=1")reg = Lasso(alpha=0.11, max_iter=100000).fit(X_train, y_train)
plt.plot(reg.coef_, "^", label="Lasso alphat=0.11")reg = Lasso(alpha=0.0001, max_iter=100000).fit(X_train, y_train)
plt.plot(reg.coef_, "v", label="Lasso alphat=0.0001")reg = Lasso(alpha=0.1, max_iter=100000).fit(X_train, y_train)
plt.plot(reg.coef_, "o", label="Lasso alphat=0.1")plt.legend(ncol=2,loc=(0,1.05))
plt.ylim(-25,25)
plt.xlabel("Coefficient index")
plt.show()

输出:
在这里插入图片描述

相关文章:

线性回归模型之套索回归

概述 本案例是基于之前的岭回归的案例的。之前案例的完整代码如下: import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge, LinearRegression from sklearn.datasets import make_regression from sklearn.model_selectio…...

解决文件夹打开出错问题:原因、数据恢复与预防措施

在我们日常使用电脑或移动设备时,有时会遇到一个非常棘手的问题——文件夹打开出错。这种错误可能会让您无法访问重要的文件和数据,给工作和生活带来极大的不便。本文将带您深入了解文件夹打开出错的原因,并提供有效的数据恢复方案&#xff0…...

Spring:面向切面(AOP)

1. 代理模式 二十三种设计模式中的一种,属于结构型模式。它的作用就是通过提供一个代理类,让我们在调用目标方法的时候,不再是直接对目标方法进行调用,而是通过代理类**间接**调用。让不属于目标方法核心逻辑的代码从目标方法中剥…...

本地镜像文件怎么导入docker desktop

docker tag d1134b7b2d5a new_repo:new_tag...

【机器学习-23】关联规则(Apriori)算法:介绍、应用与实现

在现代数据分析中,经常需要从大规模数据集中挖掘有用的信息。关联规则挖掘是一种强大的技术,可以揭示数据中的隐藏关系和规律。本文将介绍如何使用Python进行关联规则挖掘,以帮助您发现数据中的有趣模式。 一、引言 1. 简要介绍关联规则学习…...

Gradle筑基——Gradle Maven仓库管理

基础概念: 1.POM pom:全名Project Object Model 项目对象模型,用来描述当前maven项目发布模块的基础信息 pom主要节点信息如下: 配置描述举例(com.android.tools.build:gradle:4.1.1)groupId组织 / 公司的名称com.…...

c++11:智能指针的种类以及使用场景

指针管理困境 内存释放,指针没有置空;内存泄漏;资源重复释放 怎样解决? RAII 智能指针种类 shared_ptr 实现原理:多个指针指向同一资源,引用计数清零,再调用析构函数释放内存。 使用场景…...

RabbitMQ-默认读、写方式介绍

1、RabbitMQ简介 rabbitmq是一个开源的消息中间件,主要有以下用途,分别是: 应用解耦:通过使用RabbitMQ,不同的应用程序之间可以通过消息进行通信,从而降低应用程序之间的直接依赖性,提高系统的…...

阿里云百炼大模型使用

阿里云百炼大模型使用 由于阿里云百炼大模型有个新用户福利,有免费的4000000 tokens,我开通了相应的服务试试水。 使用 这里使用Android开发了一个简单的demo。 安装SDK implementation group: com.alibaba, name: dashscope-sdk-java, version: 2.…...

亲测有效,通过接口实现完美身份证号有效性验证+身份证与姓名匹配查询身份实名认证接口(实时)

最近发现一个限时认证的接口分享给大家,有需要的拿去试下吧. 附上部分密钥f478186edba9854f205a130aa888733d227a8f82f98d84b9【剩余约125450次,无时间限制】 b6131281611f6e1fc86c8662f549bdd683a68517203ba312【剩余约1300次,无时段限制】 …...

试题11 输出什么?

...

对vue3/core源码ref.ts文件API的认识过程

对toRef()API的认识的过程: 最开始认识toRef()是从vue3源码中的ref.ts看见的,右侧GPT已经举了例子 然后根据例子,在控制台输出ref对象是什么样子的: 这就是ref对象了,我们根据对象中有没有__v_isRef来判断是不是一个ref对象,当对象存在且__v_isRef true的时候他就判定为是一个…...

AWS迁移与传输之AWS DMS

AWS Database Migration Service(AWS DMS)是一项托管的服务,用于帮助企业将现有的数据库迁移到AWS云中的各种数据库引擎中,或者在不同数据库引擎之间进行数据迁移和同步。直接在线迁移,将数据复制到云端,不…...

【ML Olympiad】预测地震破坏——根据建筑物位置和施工情况预测地震对建筑物造成的破坏程度

文章目录 Overview 概述Goal 目标Evaluation 评估标准 Dataset Description 数据集说明Dataset Source 数据集来源Dataset Fields 数据集字段 Data Analysis and Visualization 数据分析与可视化Correlation 相关性Hierarchial Clustering 分层聚类Adversarial Validation 对抗…...

kafka监控配置和告警配置

Kafka的监控配置和告警配置是确保Kafka集群稳定运行的关键部分。以下是一些关于Kafka监控配置和告警配置的建议: 一、Kafka监控配置 集群级别参数监控: log.retention.hours:用于控制消息在日志中保留的时间。监控此参数的值,确…...

关于智慧校园安全用电监测系统的设计

人生人身安全是大家关注的话题,2019年12月中国消防统计近五年发生在全国学生宿舍的火灾2314起(中国消防2019.12.应急管理部消防救援局官方微博),违规电器是引发火灾的主因。如果在各寝室安装智能用电监测器实时监督线路参数&#…...

Flutter 中的 FormField 小部件:全面指南

Flutter 中的 FormField 小部件:全面指南 在Flutter的世界里,表单是用户输入数据的基本方式之一。FormField是一个强大的小部件,它将表单字段的创建、验证和管理集成到了一个易于使用的抽象中。本文将为您提供一个全面的指南,帮助…...

数据库DCL语句

数据库DCL语句 介绍: DCL英文全称是Data Control Language(数据控制语言),用来管理数据库用户、控制数据库的访 问权限。 管理用户: 查询用户: select * from mysql.user;创建用户: create user 用户名主机名 identified by 密码;修改用…...

mysql-日志管理-error.log

日志管理 默认的数据库日志 vim /etc/my.cnf //错误日志 log-error/usr/local/mysql/mysql.log查看数据库日志 tail -f /usr/local/mysql/mysql.log1 错误日志 :启动,停止,关闭失败报错。rpm安装日志位置 /var/log/mysqld.log #默认开启 2 …...

弱密码系统登录之后强制修改密码

在你登录的时候,获取到弱密码,然后将他存到vuex里面,在登录进去之后,index页面再去取,思路是这样的 一、vuex里面定义密码字段 我是直接在user.js里面写的 import { login, logout, getInfo } from /api/login impo…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求&#xff…...

Java入门学习详细版(一)

大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

企业如何增强终端安全?

在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found"​, "n…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...