当前位置: 首页 > news >正文

Java 写入 influxdb

利用Python随机生成一个1000行的csv文件

import csv
import random
from datetime import datetime, timedelta
from random import randint, choice# 定义监控对象列表和指标名称列表
monitor_objects = ['Server1', 'Server2', 'Server3', 'DB1']
metric_names = ['CPUUsage', 'MemoryUsage', 'DiskSpace', 'NetworkTraffic']# 生成随机日期范围,例如从今天开始往回计算一年的数据
start_date = datetime.now() - timedelta(days=365)
end_date = datetime.now()# 打开一个文件,准备写入
filename = 'random_data.csv'
with open(filename, mode='w', newline='', encoding='utf-8') as csvfile:fieldnames = ['dates', 'monitorObject', 'timeStamp', 'metricName', 'value']writer = csv.DictWriter(csvfile, fieldnames=fieldnames)# 写入表头writer.writeheader()# 生成并写入1000行数据for _ in range(10000000):# 随机日期random_date = start_date + (end_date - start_date) * random.random()date_str = random_date.strftime('%Y-%m-%d')time_stamp = int(random_date.timestamp())# 随机选择监控对象和指标名称monitor_object = choice(monitor_objects)metric_name = choice(metric_names)# 随机值,根据实际情况调整范围value = round(random.uniform(0, 100), 2)  # 假设值在0到100之间,保留两位小数# 写入一行数据writer.writerow({'dates': date_str,'monitorObject': monitor_object,'timeStamp': time_stamp,'metricName': metric_name,'value': value})print(f"CSV文件已成功生成,文件名为: {filename}")

利用Java写入inluxdb

package org.example;import com.csvreader.CsvReader;
import com.influxdb.client.InfluxDBClient;
import com.influxdb.client.InfluxDBClientFactory;
import com.influxdb.client.WriteApiBlocking;
import com.influxdb.client.domain.WritePrecision;
import com.influxdb.client.write.Point;import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.List;public class Main {static String token = "ZgpSCp3H_9liDB6v5POacJ8MOqnKOUR9YUlJjkIvLtFbYVyZr5Rkn-YKpUNdPqWpRKY_7Fqdwv6GN9r4A8BwcQ==";static String bucket = "data";static String org = "test";static InfluxDBClient client = InfluxDBClientFactory.create("http://localhost:8086", token.toCharArray());public static void main(String[] args) throws Exception {String CSV_FILE_PATH = "D:\\JAVA_dataAnalyze\\dataAnalyze\\src\\main\\java\\org\\example\\data\\random_data.csv";long startTime = System.currentTimeMillis();readCsv(CSV_FILE_PATH); // 方法1 串行写入long endTime = System.currentTimeMillis();System.out.println("excute time: " + (endTime - startTime) + "ms");startTime = System.currentTimeMillis();readCSVByMemory(CSV_FILE_PATH); // 方法2 stream流并行写入endTime = System.currentTimeMillis();System.out.println("excute time: " + (endTime - startTime) + "ms");}public static void readCsv(String CSV_FILE_PATH) throws Exception {CsvReader CSVReader = new CsvReader(CSV_FILE_PATH, ',', StandardCharsets.UTF_8);CSVReader.readHeaders();int rowNumber = 0;long startTime = System.currentTimeMillis();while (CSVReader.readRecord()) {// 安装mysql并引入MappingString content = CSVReader.getRawRecord();// 按照 dates,monitorObject,timeStamp,metricName,value 解析内容Point lineProtocol = row2InfluxPoint(content);//System.out.println(lineProtocol.toLineProtocol());point2InluxDB(lineProtocol);rowNumber++;if(rowNumber % 10000 == 0){long endTime = System.currentTimeMillis();System.out.println("rowNumber: " + rowNumber + "excute time: " + (endTime - startTime) + "ms");startTime = endTime;}}CSVReader.close();}public static  void readCSVByMemory(String CSV_FILE_PATH) throws Exception {CsvReader CSVReader = new CsvReader(CSV_FILE_PATH, ',', StandardCharsets.UTF_8);CSVReader.readHeaders();int rowNumber = 0;long startTime = System.currentTimeMillis();List<String> contentList =  new ArrayList<String>();while (CSVReader.readRecord()) {contentList.add(CSVReader.getRawRecord());}// 并行将contentList中的元素写入influxdbcontentList.stream().parallel().forEach(content -> {point2InluxDB(row2InfluxPoint(content));});
}public static Point row2InfluxPoint(String content) {String[] contentArray = content.split(",");Point point = Point.measurement("mem_data1T").addTag("monitorObject", contentArray[1]).addField(contentArray[3], Float.parseFloat(contentArray[4])).time(Long.parseLong(contentArray[2]), WritePrecision.S);return point;}public static void point2InluxDB(Point point){WriteApiBlocking writeApi = client.getWriteApiBlocking();writeApi.writePoint(bucket, org, point);}}
    <dependencies><dependency><groupId>net.sourceforge.javacsv</groupId><artifactId>javacsv</artifactId><version>2.0</version></dependency><dependency><groupId>com.influxdb</groupId><artifactId>influxdb-client-java</artifactId><version>6.6.0</version></dependency></dependencies>

相关文章:

Java 写入 influxdb

利用Python随机生成一个1000行的csv文件 import csv import random from datetime import datetime, timedelta from random import randint, choice# 定义监控对象列表和指标名称列表 monitor_objects [Server1, Server2, Server3, DB1] metric_names [CPUUsage, MemoryUsa…...

npm的基本命令和用法

1. 安装与初始化 安装npm 首先&#xff0c;确保你的系统中已安装了Node.js&#xff0c;因为npm随Node.js一同分发。访问Node.js官网下载并安装适合你操作系统的版本。安装完成后&#xff0c;在终端或命令提示符中输入以下命令来验证安装&#xff1a; 1$ node -v 2$ npm -v …...

Python 基于深度图、RGB图生成RGBD点云数据

RGBD点云生成 一、概述1.1 定义1.2 函数讲解二、代码示例三、结果示例一、概述 1.1 定义 RGBD点云:是一种包含颜色和深度信息的点云数据。RGB代表红、绿、蓝三原色,表示点云中每个点的颜色信息;D代表深度,表示点云中每个点的相对于相机的距离信息。通过结合颜色和深度信息…...

力扣刷题--LCR 075. 数组的相对排序【简单】

题目描述 给定两个数组&#xff0c;arr1 和 arr2&#xff0c; arr2 中的元素各不相同 arr2 中的每个元素都出现在 arr1 中 对 arr1 中的元素进行排序&#xff0c;使 arr1 中项的相对顺序和 arr2 中的相对顺序相同。未在 arr2 中出现过的元素需要按照升序放在 arr1 的末尾。 …...

机器学习笔记——K近邻算法、手写数字识别

KNN算法 “物以类聚&#xff0c;人以群分”相似的数据往往拥有相同的类别 其大概原理就是一个样本归到哪一类&#xff0c;当前样本需要归到频次最高的哪个类去 也就是说有一个待分类的样本&#xff0c;然后跟他周围的k个样本来看&#xff0c;k中哪一个类最多&#xff0c;待分类…...

基于STM32实现智能园艺系统

目录 引言环境准备智能园艺系统基础代码示例&#xff1a;实现智能园艺系统 土壤湿度传感器数据读取水泵控制温湿度传感器数据读取显示系统用户输入和设置应用场景&#xff1a;智能农业与家庭园艺问题解决方案与优化收尾与总结 1. 引言 本教程将详细介绍如何在STM32嵌入式系统…...

网络原理-HTTP协议

HTTP协议 HTTP协议全称为超文本传输协议,除了能传输字符串,还能传输图片、视频、音频等。 当我们在访问网页的时候,浏览器会从服务器上下载数据,这些数据都会放在HTTP响应中,然后浏览器再根据这个HTTP响应显示出网页信息。 抓包 抓包工具本质上是一个代理工具,即我们将构造…...

【ES001】elasticsearch实战经验总结(最近更新中)

1.熟悉、梳理、总结下elasticsearch相关知识体系。 2.日常研发过程中使用较少&#xff0c;随着时间的推移&#xff0c;很快就忘得一干二净&#xff0c;所以梳理总结下&#xff0c;以备日常使用参考 3.欢迎批评指正&#xff0c;跪谢一键三连&#xff01; 文章目录 1. 1....

OpenBayes 一周速览|TripoSR 开源:1 秒即 2D 变 3D、经典 GTZAN 音乐数据集上线

公共资源速递 This Weekly Snapshots &#xff01;5 个数据集&#xff1a; FER2013 面部表情识别数据集 GTZAN 音乐流派分类数据集 MVTec-AD 工业异常检测数据集 UCAS-AOD 遥感目标检测数据集 Oxford 102 Flowers 花卉图片数据集 3 个教程&#xff1a; Latte 全球首个开…...

【论文笔记】advPattern

【论文题目】 advPattern: Physical-World Attacks on Deep Person Re-Identification via Adversarially Transformable Patterns Abstract 本文首次尝试对深度reID实施鲁棒的物理世界攻击。提出了一种新颖的攻击算法&#xff0c;称为advPattern&#xff0c;用于在衣服上生成…...

【鱼眼镜头11】Kannala-Brandt模型和Scaramuzza多项式模型区别,哪个更好?

Kannala-Brandt模型和Scaramuzza多项式模型在描述鱼眼相机畸变时都有其特定的数学表示和应用&#xff0c;但它们之间存在一些区别。以下是对两者区别的分点表示和归纳&#xff1a; 数学表示&#xff1a; Kannala-Brandt模型&#xff1a;它假设图像光心到投影点的距离和角度的多…...

微信小程序仿胖东来轮播和背景效果(有效果图)

效果图 .wxml <view class"swiper-index" style"--width--:{{windowWidth}}px;"><image src"{{swiperList[(cardCur bgIndex -1?swiperList.length - 1:cardCur bgIndex > swiperList.length -1?0:cardCur bgIndex)]}}" clas…...

10.SpringBoot 统一处理功能

文章目录 1.拦截器1.1在代码中的应用1.1.1定义拦截器1.1.2注册配置拦截器 1.2拦截器的作用1.3拦截器的实现 2.统一数据返回格式2.1 为什么需要统⼀数据返回格式&#xff1f;2.2 统⼀数据返回格式的实现 3.统一异常处理4.SpringBoot专业版创建项目无Java8版本怎么办&#xff1f;…...

【八股系列】为什么会有webpack配置?webpack的构建流程是什么?

文章目录 1. webpack是什么&#xff1f;2. 为什么需要webpack&#xff1f;3. webpack构建原理4. 构建流程通常包括以下步骤5. Webpack构建流程图 1. webpack是什么&#xff1f; Webpack是一个模块打包工具&#xff0c;它可以将项目中的各种静态资源&#xff0c;如JavaScript、…...

sdf 测试-2-openssl

任务详情 在openEuler(推荐)或Ubuntu或Windows(不推荐)中完成下面任务,参考网内容 和AI要给出详细过程&#xff0c;否则不得分。 0. 根据gmt0018标准&#xff0c;如何调用接口实现基于SM3求你的学号姓名的SM3值&#xff1f;&#xff08;5‘&#xff09; 使用OpenSSL实现SDF接…...

头歌springboot初体验

您好&#xff01;看起来您可能在询问关于Spring Boot的入门体验。Spring Boot是一个开源的Java框架&#xff0c;它设计用来简化Spring应用程序的初始搭建和开发过程。以下是一些Spring Boot的基本概念和入门步骤&#xff1a; Spring Boot简介&#xff1a; Spring Boot是Spring框…...

矩阵对角化在机器学习中的奥秘与应用

在机器学习的广阔领域中&#xff0c;矩阵对角化作为一种重要的数学工具&#xff0c;扮演着不可或缺的角色。从基础的线性代数理论到复杂的机器学习算法&#xff0c;矩阵对角化都在其中发挥着重要的作用。 矩阵对角化的概念与原理 矩阵对角化是矩阵理论中的一个基本概念&#x…...

操作MySQL数据库

【一】针对库的增删查改&#xff08;文件夹&#xff09; 【1】创建数据库 &#xff08;1&#xff09;语法 创建一个存储数据表的文件夹。 注意&#xff1a;mysql中的编码字符集中utf-8&#xff0c;要换成utf8mb4。SQL语句中的中括号部分表示可选。 create database [if no…...

Linux shell 文件生成文件脚本(模拟生成文件、生成大量文件)

文章目录 Linux shell 文件生成文件脚本 Linux shell 文件生成文件脚本 TARGET_DIR&#xff1a;生成文件路径 NUM_FILES&#xff1a;生成文件数量 FILE_SIZE&#xff1a;生成文件大小&#xff08;KB&#xff09; #!/bin/bashset -e set -u# Directory where files will be cr…...

theharvester一键收集域名信息(KALI工具系列十)

目录 1、KALI LINUX简介 2、theharvester工具简介 3、在KALI中使用theharvester 3.1 用搜索引擎扫描 3.2 扫描并输出结果 3.3 扫描某域名下的所有账号 3.4 使用所有的搜索引擎扫描 4、总结 1、KALI LINUX简介 Kali Linux 是一个功能强大、多才多艺的 Linux 发行版&…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...