当前位置: 首页 > news >正文

常见排序算法之选择排序

目录

一、选择排序

1.1 什么是选择排序?

1.2 思路

1.2.1 思路一

1.2.2 优化思路

1.3 C语言源码

1.3.1 思路一

1.3.2 优化思路

二、堆排序

2.1 调整算法

2.1.2 向上调整算法

2.1.3 向下调整算法

2.2 建堆排序


一、选择排序

1.1 什么是选择排序?

选择排序是一种简单直观的排序算法。它的基本思想是从未排序的数据中选择最小(或最大)的元素,放到已排序数据的末尾,同时将该元素从未排序部分删除,直到所有元素都排序完成。

具体操作为,首先找到未排序部分的最小元素,并与未排序部分的第一个元素交换位置,这样就完成了一次选择。然后,将接下来未排序部分的第一个元素视为最小,找到最小元素并与未排序部分的第一个元素交换位置,以此类推,直到所有元素都排序完成。

选择排序的时间复杂度为O(n^2),是一种不稳定的排序算法。虽然它的效率相对较低,但由于其简单易实现,可以用于排序小规模的数据集合。然而对于大规模数据集合,选择排序通常不是一个最佳的选择。

1.2 思路

1.2.1 思路一

  1. 遍历第一趟数组,找出数组的最小值,与第一个数据交换
  2. 遍历第二趟数组,继续找出最小值,与第二个数据交换
  3. 重复上述动作

1.2.2 优化思路

  1. 一趟遍历找到最大和最小的元素,分别把他们放到数组的两端
  2. 缩小区间最大最小值包含的区间,找到次大,次小的元素
  3. 以此类推,直到头尾下标重合

该思路可能存在的问题:当maxi的位置与begin重合,则begin先与mini的位置交换,此时max位置的最大值被交换走,导致endmax交换的数值是错误的(图解见下)

1.3 C语言源码

1.3.1 思路一

//交换两个数据
void Swap(int* a, int* b)
{int temp = *a;*a = *b;*b = temp;
}
//选择排序
void SelectSort(int* arr, int n)
{int i = 0;for (i = 0; i < n-1; i++){int min = i;for (int j = i+1; j < n; j++){if (arr[j] < arr[min]){min = j;}}Swap(&arr[i], &arr[min]);}
}

1.3.2 优化思路

//交换两个元素
void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
//插入排序
void SelectSort(int* a, int n)
{int begin = 0;int end = n - 1;while (begin < end){int mini = begin;int maxi = begin;//在区间中找出最小的数和最大的数for (int i = begin + 1; i <= end; i++){if (a[i] > a[maxi]){maxi = i;}if (a[i] < a[mini]){mini = i;}}//最小的数与首交换Swap(&a[begin], &a[mini]);//特殊情况修正if (begin == maxi)				{maxi = mini;}//最大的数与尾交换Swap(&a[end], &a[maxi]);begin++;end--;}
}

二、堆排序

2.1 调整算法

详细图解请见:二叉树的顺序实现-堆-CSDN博客

2.1.2 向上调整算法

void AdjustUp(int* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}

2.1.3 向下调整算法

void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){//找出小孩子if (child + 1 < n && a[child + 1] < a[child]){++child;}//交换if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}

2.2 建堆排序

请点击:堆排序与TopK问题详解-CSDN博客

相关文章:

常见排序算法之选择排序

目录 一、选择排序 1.1 什么是选择排序&#xff1f; 1.2 思路 1.2.1 思路一 1.2.2 优化思路 1.3 C语言源码 1.3.1 思路一 1.3.2 优化思路 二、堆排序 2.1 调整算法 2.1.2 向上调整算法 2.1.3 向下调整算法 2.2 建堆排序 一、选择排序 1.1 什么是选择排序&#xf…...

Redis 事件机制 - AE 抽象层

Redis 服务器是一个事件驱动程序&#xff0c;它主要处理如下两种事件&#xff1a; 文件事件&#xff1a;利用 I/O 复用机制&#xff0c;监听 Socket 等文件描述符上发生的事件。这类事件主要由客户端&#xff08;或其他Redis 服务器&#xff09;发送网络请求触发。时间事件&am…...

Java | Leetcode Java题解之第118题杨辉三角

题目&#xff1a; 题解&#xff1a; class Solution {public List<List<Integer>> generate(int numRows) {List<List<Integer>> ret new ArrayList<List<Integer>>();for (int i 0; i < numRows; i) {List<Integer> row new…...

DNS 解析过程

文章目录 简介特点查询方式⚡️1. 浏览器缓存2. 系统缓存&#xff08;hosts文件&#xff09;3. 路由器缓存4. 本地域名服务器5. 根域名服务器6. 顶级域名服务器7. 权限域名服务器8. 本地域名服务器缓存并返回9. 操作系统缓存并返回10. 浏览器缓存并访问流程图 总结 简介 DNS&a…...

Golang | Leetcode Golang题解之第118题杨辉三角

题目&#xff1a; 题解&#xff1a; func generate(numRows int) [][]int {ans : make([][]int, numRows)for i : range ans {ans[i] make([]int, i1)ans[i][0] 1ans[i][i] 1for j : 1; j < i; j {ans[i][j] ans[i-1][j] ans[i-1][j-1]}}return ans }...

操作系统实验——线程与进程

如果代码或文章中&#xff0c;有什么错误或疑惑&#xff0c;欢迎交流沟通哦~ ## 进程与线程的区别 1. **各自定义**&#xff1a; 进程是操作系统进行资源分配和调度的一个独立单位&#xff0c;具有一定独立功能的程序关于某个数据集合的依次运行活动。 线程被称为轻量级的进程…...

最强端侧多模态模型MiniCPM-V 2.5,8B 参数,性能超越 GPT-4V 和 Gemini Pro

前言 近年来&#xff0c;人工智能领域掀起了一股大模型热潮&#xff0c;然而大模型的巨大参数量级和高昂的算力需求&#xff0c;限制了其在端侧设备上的应用。为了打破这一局限&#xff0c;面壁智能推出了 MiniCPM 模型家族&#xff0c;致力于打造高性能、低参数量的端侧模型。…...

Spring Boot中如何查询PGSQL分表后的数据

数据库用的pgsql&#xff0c;在表数据超过100w条的时候执行定时任务进行了分表&#xff0c;分表后表名命名为原的表名后面拼接时间&#xff0c;如原表名是card_device_trajectory_info&#xff0c;分表后拼接时间后得到card_device_trajectory_info_20240503&#xff0c;然后分…...

如何学习一个新技能

1. 提出想法 2.找到学习方法&#xff0c;学习路径 3.开始学 参考视频&#xff1a;如何成为超速学习者&#xff1f;快速学会任何新技能&#xff01;_哔哩哔哩_bilibili...

sklearn之logistic回归

文章目录 logistic回归logit logistic回归 logistic regression被称之为logistic回归&#xff0c;对于logistic这个单词来说&#xff0c;他本身的翻译其实不太容易&#xff0c;比较有名的译法是对数几率回归&#xff0c;我也认为这种译法是比较合适的&#xff0c;虽然并非logi…...

Warning: Each child in a list should have a unique “key“ prop.

问题描述&#xff1a; 使用ProTable的时候&#xff0c;报错如下 原因分析&#xff1a; 根据报错内容可以分析出&#xff0c;表格数据缺少唯一key&#xff0c; <PaginationTablecolumns{columns}pagination{{pageSize: 10,current: 1,showSizeChanger: true,showQuickJum…...

JavaSE:StringBuilder和StringBuffer类

1、引言 在上一篇文章中&#xff0c;我们理解了字符串的常用方法&#xff0c;细心的同学大概已经发现&#xff0c;不管是将字符串中的字符转变为大写或小写&#xff0c;或是完成字符串的替换&#xff0c;又或是去除空白字符等等&#xff0c;只要涉及到字符串的修改&#xff0c…...

C语言在线编程网站:探索编程的奥秘与深度

C语言在线编程网站&#xff1a;探索编程的奥秘与深度 在数字世界的浩瀚海洋中&#xff0c;编程已成为连接现实与虚拟的桥梁。而C语言&#xff0c;作为编程领域的经典之作&#xff0c;其深度与广度令无数探索者着迷。为了满足广大编程爱好者的需求&#xff0c;C语言在线编程网站…...

Android 之广播监听网络变化

网络状态变化监听帮助类 NetBroadcastReceiverHelper public class NetBroadcastReceiverHelper {private static final String TAG "NetBroadcastReceiverHelper";private static final String NET_CHANGE_ACTION "android.net.conn.CONNECTIVITY_CHANGE&qu…...

Hono 框架使用经验谈

Hono&#x1f525;是一个小型、快速并开源的 Serverless Web 框架&#xff0c;用 TypeScript 写就。它适用于任何JavaScript运行时&#xff1a;Cloudflare Workers&#xff0c;Fastly ComputeEdge&#xff0c;Deno&#xff0c;Bun&#xff0c;Vercel&#xff0c;Netlify&#x…...

mac 下配置mysql的全局环境变量

前言 如果你还没有安装mysql&#xff0c;请参考这篇文章手把手教你MAC本地数据库的安装与使用&#xff1a;mysql python (pymysql)【一】 - 知乎 正文 1.打开终端&#xff0c;输入命令”echo $SHELL“,显示当前的shell ⚠️本人使用的终端shell是zsh&#xff0c;如果你使用…...

小红书云原生 Kafka 技术剖析:分层存储与弹性伸缩

面对 Kafka 规模快速增长带来的成本、效率和稳定性挑战时&#xff0c;小红书大数据存储团队采取云原生架构实践&#xff1a;通过引入冷热数据分层存储、容器化技术以及自研的负载均衡服务「Balance Control」&#xff0c;成功实现了集群存储成本的显著降低、分钟级的集群弹性迁…...

Python实现解码二进制数据以匹配给定的C++结构体

要在Python中实现解码二进制数据以匹配给定的C结构体Ytest&#xff0c;你需要了解每个字段在结构体中的偏移量&#xff08;由于结构体内存对齐&#xff0c;这些偏移量可能与字段的顺序和大小不完全对应&#xff09;。不过&#xff0c;在没有指定内存对齐的情况下&#xff0c;我…...

实施阶段(2024年5月)

【项目活动1】斐波拉契数列第n项的值&#xff1f; 数学思想&#xff1a;第一项和第二项的值都为1&#xff0c;从第三项开始值为前两项的和。 方法一&#xff1a;迭代 迭代变量&#xff1a;f1和f2 迭代表达式&#xff1a;f1,f2f2,f1f2 计数器&#xff1a;i 迭代表达式运算…...

(delphi11最新学习资料) Object Pascal 学习笔记---第13章第3节 (弱引用是系统托管的 )

13.4.2 弱引用是系统托管的 ​ 弱引用的托管是一个非常重要的内容。换句话说&#xff0c;系统会在内存中保存一个弱引用列表&#xff0c;当对象被销毁时&#xff0c;系统会检查是否有任何弱引用指向该对象&#xff0c;如果有&#xff0c;系统会将实际引用赋值为 nil&#xff0…...

安装WordPress

第 1 步&#xff1a;下载并解压 wget https://wordpress.org/latest.tar.gz 然后使用以下命令提取包&#xff1a; tar -xzvf latest.tar.gz 第 2 步&#xff1a;创建数据库 比如数据库名称为wordpress&#xff0c;编码格式为 utf8mb4_general_ci 第 3 步&#xff1a;设置wp-con…...

【STL库源码剖析】list 简单实现

从此音尘各悄然 春山如黛草如烟 目录 list 的结点设计 list 的迭代器 list 的部分框架 迭代器的实现 容量相关相关函数 实现 insert 在指定位置插入 val 实现 push_back 在尾部进行插入 实现 erase 在指定位置删除 实现 pop_back 在尾部进行删除 实现 list 的头插、头删 实现…...

web前端框架设计第十一课-常用插件

web前端框架设计第十一课-常用插件 一.预习笔记 1.路由的基础使用 2.动态路由 3.嵌套路由 二.课堂笔记 三.课后回顾 –行动是治愈恐惧的良药&#xff0c;犹豫拖延将不断滋养恐惧...

Java基础-注解

注解本质是继承了Annotation接口的一个接口 首先&#xff0c;我们通过键值对的形式可以为注解属性赋值&#xff0c;像这样&#xff1a;Hello&#xff08;value “hello”&#xff09;。 接着&#xff0c;你用注解修饰某个元素&#xff0c;编译器将在编译期扫描每个类或者方…...

SpringCloud之SSO单点登录-基于Gateway和OAuth2的跨系统统一认证和鉴权详解

单点登录&#xff08;SSO&#xff09;是一种身份验证过程&#xff0c;允许用户通过一次登录访问多个系统。本文将深入解析单点登录的原理&#xff0c;并详细介绍如何在Spring Cloud环境中实现单点登录。通过具体的架构图和代码示例&#xff0c;我们将展示SSO的工作机制和优势&a…...

二分查找算法详讲(三种版本写法)原创

介绍: 二分查找算法&#xff08;Binary Search&#xff09;是一种在有序数组中查找目标元素的算法。 它的基本思想是通过将目标元素与数组的中间元素进行比较&#xff0c;从而将搜索范围缩小一半。 如果目标元素等于中间元素&#xff0c;则搜索结束&#xff1b;如果目标元素小…...

Git钩子(Hooks)之commit之前自动执行脚本

介绍 官方文档&#xff1a; 英文&#xff1a;https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks中文&#xff1a;https://git-scm.com/book/zh/v2/自定义-Git-Git-钩子 下面只复制了pre-commit部分文档&#xff0c;其他详见官方文档。 Git Hooks Like many other…...

nano机器人2:机械臂的视觉抓取

前言 参考链接: 【机械臂入门教程】机械臂视觉抓取从理论到实战 GRCNN 通过神经网络&#xff0c;先进行模型训练&#xff0c;在进行模型评估。 机械臂逆运动学求解 所有串联型6自由度机械臂均是可解的&#xff0c;但这种解通常只能通过数值解法得到&#xff0c;计算难度大&am…...

技术速递|宣布 Java on Azure 开发工具支持 Java on Azure Container Apps

作者&#xff1a;Jialuo Gan 排版&#xff1a;Alan Wang 在 Microsoft Build 2024 期间宣布&#xff0c;Azure Container Apps 现在可为 Java 开发人员提供丰富的操作功能。(详细内容请参见本博客&#xff09;。 我们很高兴地与大家分享&#xff0c;Azure Toolkit for Intelli…...

随机森林算法实现分类

随机森林算法实现对编码后二进制数据的识别 1.直接先上代码&#xff01; import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import …...