当前位置: 首页 > news >正文

最强端侧多模态模型MiniCPM-V 2.5,8B 参数,性能超越 GPT-4V 和 Gemini Pro

前言

近年来,人工智能领域掀起了一股大模型热潮,然而大模型的巨大参数量级和高昂的算力需求,限制了其在端侧设备上的应用。为了打破这一局限,面壁智能推出了 MiniCPM 模型家族,致力于打造高性能、低参数量的端侧模型。近期,面壁智能再次推出了最新一代端侧多模态模型 MiniCPM-Llama3-V 2.5,以 8B 的参数量级,展现出了超越 GPT-4V 和 Gemini Pro 等多模态巨无霸的强大实力。

  • Huggingface模型下载:https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5

  • AI快站模型免费加速下载:https://aifasthub.com/models/openbmb

技术特点

MiniCPM-Llama3-V 2.5 拥有以下关键技术特点:

  • 以小博大,参数精简,性能卓越

MiniCPM-Llama3-V 2.5 仅拥有 8B 参数,却在多模态综合性能、OCR 能力、幻觉控制等方面超越了 GPT-4V 和 Gemini Pro 等更大模型,证明了面壁智能在模型压缩和性能优化方面的领先技术。

  • OCR 能力 SOTA,识别精准,效率更高

MiniCPM-Llama3-V 2.5 在 OCRBench 基准测试中取得了 SOTA 成绩,超越了 Claude 3V Opus、Gemini Pro 等标杆模型,展现出强大的 OCR 能力。模型支持高效编码及无损识别 180 万高清像素图片,并支持任意长宽比,甚至能识别 1:9 极限比例图像,突破了传统 OCR 技术只能识别 20 万像素小图的瓶颈。

  • 复杂推理能力强,更懂图像,更会思考

MiniCPM-Llama3-V 2.5 不仅仅能理解图像中的文字,还能深入洞察图像,在更复杂、更接近人类的水平上进行思考和解决问题。例如,面对一张充满繁密字迹的建筑风景图,模型不仅能够识别出《三体》主题,还能正确推理出这些建筑是为了纪念《三体》及其对中国科幻文学的贡献而设计。

  • 首次实现端侧系统级加速,效率提升 150 倍

MiniCPM-Llama3-V 2.5 首次实现了端侧系统级多模态加速,在图像编码方面,整合了 NPU 和 CPU 加速框架,并结合显存管理、编译优化技术,实现了 150 倍的加速提升。在语言模型推理方面,经过优化,模型在手机端的语言解码速度提升到 3-4 token/s,大幅提升了端侧应用的效率。

  • 支持 30+ 种语言,拥抱世界开源社区

MiniCPM-Llama3-V 2.5 支持 30+ 种语言,包括德语、法语、西班牙语、意大利语、俄语等主流语言,基本覆盖一带一路国家。基于自研的跨语言泛化技术,模型仅通过少量翻译的多模态数据的指令微调,就能对多语言多模态对话性能高效泛化,让全球用户都能享受到端侧多模态技术的便利。

性能优势

MiniCPM-Llama3-V 2.5 在多个方面展现出了优异的性能:

  • 多模态综合性能: 在 OpenCompass 平台上,MiniCPM-Llama3-V 2.5 以 8B 的参数量级,综合性能超越了 GPT-4V 和 Gemini Pro,展现了小模型大潜力的优势。

  • 幻觉控制: 在 Object HalBench 榜单上,MiniCPM-Llama3-V 2.5 的幻觉率大幅降低,再次超越 GPT-4V 和 LLaVA-NeXT-34B,证明了模型在生成可靠、可信答案方面的进步。

  • 空间理解能力: 在 RealWorldQA 榜单上,MiniCPM-Llama3-V 2.5 的性能仅次于 InternVL-Chat-V1.5 (26B),却依旧超越了 GPT-4V 和 Gemini Pro,展现了模型在处理空间信息方面的能力。

应用场景

MiniCPM-Llama3-V 2.5 在多个领域具有广泛的应用潜力,可以为用户提供更便捷、更具创意的创作体验:

  • 智能手机应用: 可以用于手机上的图像识别、文字识别、问答、语音助手等功能。

  • 智慧家居: 可以用于智能家居设备的图像识别、语音控制、信息查询等功能。

  • 工业应用: 可以用于工业场景的图像识别、故障诊断、安全监控等功能。

  • 医疗领域: 可以用于医学图像分析、诊断辅助等功能。

总结

MiniCPM-Llama3-V 2.5 的发布,标志着端侧多模态模型迈上了新的台阶,它用实力证明了模型参数量级并非衡量性能的唯一指标,小模型也能拥有强大的能力。相信未来 MiniCPM 模型家族将会在更多领域发挥重要作用,为人们的生活带来更多便利和乐趣。

模型下载

Huggingface模型下载

https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5

AI快站模型免费加速下载

https://aifasthub.com/models/openbmb

相关文章:

最强端侧多模态模型MiniCPM-V 2.5,8B 参数,性能超越 GPT-4V 和 Gemini Pro

前言 近年来,人工智能领域掀起了一股大模型热潮,然而大模型的巨大参数量级和高昂的算力需求,限制了其在端侧设备上的应用。为了打破这一局限,面壁智能推出了 MiniCPM 模型家族,致力于打造高性能、低参数量的端侧模型。…...

Spring Boot中如何查询PGSQL分表后的数据

数据库用的pgsql,在表数据超过100w条的时候执行定时任务进行了分表,分表后表名命名为原的表名后面拼接时间,如原表名是card_device_trajectory_info,分表后拼接时间后得到card_device_trajectory_info_20240503,然后分…...

如何学习一个新技能

1. 提出想法 2.找到学习方法,学习路径 3.开始学 参考视频:如何成为超速学习者?快速学会任何新技能!_哔哩哔哩_bilibili...

sklearn之logistic回归

文章目录 logistic回归logit logistic回归 logistic regression被称之为logistic回归,对于logistic这个单词来说,他本身的翻译其实不太容易,比较有名的译法是对数几率回归,我也认为这种译法是比较合适的,虽然并非logi…...

Warning: Each child in a list should have a unique “key“ prop.

问题描述&#xff1a; 使用ProTable的时候&#xff0c;报错如下 原因分析&#xff1a; 根据报错内容可以分析出&#xff0c;表格数据缺少唯一key&#xff0c; <PaginationTablecolumns{columns}pagination{{pageSize: 10,current: 1,showSizeChanger: true,showQuickJum…...

JavaSE:StringBuilder和StringBuffer类

1、引言 在上一篇文章中&#xff0c;我们理解了字符串的常用方法&#xff0c;细心的同学大概已经发现&#xff0c;不管是将字符串中的字符转变为大写或小写&#xff0c;或是完成字符串的替换&#xff0c;又或是去除空白字符等等&#xff0c;只要涉及到字符串的修改&#xff0c…...

C语言在线编程网站:探索编程的奥秘与深度

C语言在线编程网站&#xff1a;探索编程的奥秘与深度 在数字世界的浩瀚海洋中&#xff0c;编程已成为连接现实与虚拟的桥梁。而C语言&#xff0c;作为编程领域的经典之作&#xff0c;其深度与广度令无数探索者着迷。为了满足广大编程爱好者的需求&#xff0c;C语言在线编程网站…...

Android 之广播监听网络变化

网络状态变化监听帮助类 NetBroadcastReceiverHelper public class NetBroadcastReceiverHelper {private static final String TAG "NetBroadcastReceiverHelper";private static final String NET_CHANGE_ACTION "android.net.conn.CONNECTIVITY_CHANGE&qu…...

Hono 框架使用经验谈

Hono&#x1f525;是一个小型、快速并开源的 Serverless Web 框架&#xff0c;用 TypeScript 写就。它适用于任何JavaScript运行时&#xff1a;Cloudflare Workers&#xff0c;Fastly ComputeEdge&#xff0c;Deno&#xff0c;Bun&#xff0c;Vercel&#xff0c;Netlify&#x…...

mac 下配置mysql的全局环境变量

前言 如果你还没有安装mysql&#xff0c;请参考这篇文章手把手教你MAC本地数据库的安装与使用&#xff1a;mysql python (pymysql)【一】 - 知乎 正文 1.打开终端&#xff0c;输入命令”echo $SHELL“,显示当前的shell ⚠️本人使用的终端shell是zsh&#xff0c;如果你使用…...

小红书云原生 Kafka 技术剖析:分层存储与弹性伸缩

面对 Kafka 规模快速增长带来的成本、效率和稳定性挑战时&#xff0c;小红书大数据存储团队采取云原生架构实践&#xff1a;通过引入冷热数据分层存储、容器化技术以及自研的负载均衡服务「Balance Control」&#xff0c;成功实现了集群存储成本的显著降低、分钟级的集群弹性迁…...

Python实现解码二进制数据以匹配给定的C++结构体

要在Python中实现解码二进制数据以匹配给定的C结构体Ytest&#xff0c;你需要了解每个字段在结构体中的偏移量&#xff08;由于结构体内存对齐&#xff0c;这些偏移量可能与字段的顺序和大小不完全对应&#xff09;。不过&#xff0c;在没有指定内存对齐的情况下&#xff0c;我…...

实施阶段(2024年5月)

【项目活动1】斐波拉契数列第n项的值&#xff1f; 数学思想&#xff1a;第一项和第二项的值都为1&#xff0c;从第三项开始值为前两项的和。 方法一&#xff1a;迭代 迭代变量&#xff1a;f1和f2 迭代表达式&#xff1a;f1,f2f2,f1f2 计数器&#xff1a;i 迭代表达式运算…...

(delphi11最新学习资料) Object Pascal 学习笔记---第13章第3节 (弱引用是系统托管的 )

13.4.2 弱引用是系统托管的 ​ 弱引用的托管是一个非常重要的内容。换句话说&#xff0c;系统会在内存中保存一个弱引用列表&#xff0c;当对象被销毁时&#xff0c;系统会检查是否有任何弱引用指向该对象&#xff0c;如果有&#xff0c;系统会将实际引用赋值为 nil&#xff0…...

安装WordPress

第 1 步&#xff1a;下载并解压 wget https://wordpress.org/latest.tar.gz 然后使用以下命令提取包&#xff1a; tar -xzvf latest.tar.gz 第 2 步&#xff1a;创建数据库 比如数据库名称为wordpress&#xff0c;编码格式为 utf8mb4_general_ci 第 3 步&#xff1a;设置wp-con…...

【STL库源码剖析】list 简单实现

从此音尘各悄然 春山如黛草如烟 目录 list 的结点设计 list 的迭代器 list 的部分框架 迭代器的实现 容量相关相关函数 实现 insert 在指定位置插入 val 实现 push_back 在尾部进行插入 实现 erase 在指定位置删除 实现 pop_back 在尾部进行删除 实现 list 的头插、头删 实现…...

web前端框架设计第十一课-常用插件

web前端框架设计第十一课-常用插件 一.预习笔记 1.路由的基础使用 2.动态路由 3.嵌套路由 二.课堂笔记 三.课后回顾 –行动是治愈恐惧的良药&#xff0c;犹豫拖延将不断滋养恐惧...

Java基础-注解

注解本质是继承了Annotation接口的一个接口 首先&#xff0c;我们通过键值对的形式可以为注解属性赋值&#xff0c;像这样&#xff1a;Hello&#xff08;value “hello”&#xff09;。 接着&#xff0c;你用注解修饰某个元素&#xff0c;编译器将在编译期扫描每个类或者方…...

SpringCloud之SSO单点登录-基于Gateway和OAuth2的跨系统统一认证和鉴权详解

单点登录&#xff08;SSO&#xff09;是一种身份验证过程&#xff0c;允许用户通过一次登录访问多个系统。本文将深入解析单点登录的原理&#xff0c;并详细介绍如何在Spring Cloud环境中实现单点登录。通过具体的架构图和代码示例&#xff0c;我们将展示SSO的工作机制和优势&a…...

二分查找算法详讲(三种版本写法)原创

介绍: 二分查找算法&#xff08;Binary Search&#xff09;是一种在有序数组中查找目标元素的算法。 它的基本思想是通过将目标元素与数组的中间元素进行比较&#xff0c;从而将搜索范围缩小一半。 如果目标元素等于中间元素&#xff0c;则搜索结束&#xff1b;如果目标元素小…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟

2025年4月29日&#xff0c;在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上&#xff0c;可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞&#xff0c;强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...

PH热榜 | 2025-06-08

1. Thiings 标语&#xff1a;一套超过1900个免费AI生成的3D图标集合 介绍&#xff1a;Thiings是一个不断扩展的免费AI生成3D图标库&#xff0c;目前已有超过1900个图标。你可以按照主题浏览&#xff0c;生成自己的图标&#xff0c;或者下载整个图标集。所有图标都可以在个人或…...

【51单片机】4. 模块化编程与LCD1602Debug

1. 什么是模块化编程 传统编程会将所有函数放在main.c中&#xff0c;如果使用的模块多&#xff0c;一个文件内会有很多代码&#xff0c;不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里&#xff0c;在.h文件里提供外部可调用函数声明&#xff0c;其他.c文…...