最强端侧多模态模型MiniCPM-V 2.5,8B 参数,性能超越 GPT-4V 和 Gemini Pro
前言
近年来,人工智能领域掀起了一股大模型热潮,然而大模型的巨大参数量级和高昂的算力需求,限制了其在端侧设备上的应用。为了打破这一局限,面壁智能推出了 MiniCPM 模型家族,致力于打造高性能、低参数量的端侧模型。近期,面壁智能再次推出了最新一代端侧多模态模型 MiniCPM-Llama3-V 2.5,以 8B 的参数量级,展现出了超越 GPT-4V 和 Gemini Pro 等多模态巨无霸的强大实力。
-
Huggingface模型下载:https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5
-
AI快站模型免费加速下载:https://aifasthub.com/models/openbmb

技术特点
MiniCPM-Llama3-V 2.5 拥有以下关键技术特点:
-
以小博大,参数精简,性能卓越
MiniCPM-Llama3-V 2.5 仅拥有 8B 参数,却在多模态综合性能、OCR 能力、幻觉控制等方面超越了 GPT-4V 和 Gemini Pro 等更大模型,证明了面壁智能在模型压缩和性能优化方面的领先技术。

-
OCR 能力 SOTA,识别精准,效率更高
MiniCPM-Llama3-V 2.5 在 OCRBench 基准测试中取得了 SOTA 成绩,超越了 Claude 3V Opus、Gemini Pro 等标杆模型,展现出强大的 OCR 能力。模型支持高效编码及无损识别 180 万高清像素图片,并支持任意长宽比,甚至能识别 1:9 极限比例图像,突破了传统 OCR 技术只能识别 20 万像素小图的瓶颈。

-
复杂推理能力强,更懂图像,更会思考
MiniCPM-Llama3-V 2.5 不仅仅能理解图像中的文字,还能深入洞察图像,在更复杂、更接近人类的水平上进行思考和解决问题。例如,面对一张充满繁密字迹的建筑风景图,模型不仅能够识别出《三体》主题,还能正确推理出这些建筑是为了纪念《三体》及其对中国科幻文学的贡献而设计。

-
首次实现端侧系统级加速,效率提升 150 倍
MiniCPM-Llama3-V 2.5 首次实现了端侧系统级多模态加速,在图像编码方面,整合了 NPU 和 CPU 加速框架,并结合显存管理、编译优化技术,实现了 150 倍的加速提升。在语言模型推理方面,经过优化,模型在手机端的语言解码速度提升到 3-4 token/s,大幅提升了端侧应用的效率。
-
支持 30+ 种语言,拥抱世界开源社区
MiniCPM-Llama3-V 2.5 支持 30+ 种语言,包括德语、法语、西班牙语、意大利语、俄语等主流语言,基本覆盖一带一路国家。基于自研的跨语言泛化技术,模型仅通过少量翻译的多模态数据的指令微调,就能对多语言多模态对话性能高效泛化,让全球用户都能享受到端侧多模态技术的便利。
性能优势
MiniCPM-Llama3-V 2.5 在多个方面展现出了优异的性能:
-
多模态综合性能: 在 OpenCompass 平台上,MiniCPM-Llama3-V 2.5 以 8B 的参数量级,综合性能超越了 GPT-4V 和 Gemini Pro,展现了小模型大潜力的优势。
-
幻觉控制: 在 Object HalBench 榜单上,MiniCPM-Llama3-V 2.5 的幻觉率大幅降低,再次超越 GPT-4V 和 LLaVA-NeXT-34B,证明了模型在生成可靠、可信答案方面的进步。
-
空间理解能力: 在 RealWorldQA 榜单上,MiniCPM-Llama3-V 2.5 的性能仅次于 InternVL-Chat-V1.5 (26B),却依旧超越了 GPT-4V 和 Gemini Pro,展现了模型在处理空间信息方面的能力。

应用场景
MiniCPM-Llama3-V 2.5 在多个领域具有广泛的应用潜力,可以为用户提供更便捷、更具创意的创作体验:
-
智能手机应用: 可以用于手机上的图像识别、文字识别、问答、语音助手等功能。
-
智慧家居: 可以用于智能家居设备的图像识别、语音控制、信息查询等功能。
-
工业应用: 可以用于工业场景的图像识别、故障诊断、安全监控等功能。
-
医疗领域: 可以用于医学图像分析、诊断辅助等功能。
总结
MiniCPM-Llama3-V 2.5 的发布,标志着端侧多模态模型迈上了新的台阶,它用实力证明了模型参数量级并非衡量性能的唯一指标,小模型也能拥有强大的能力。相信未来 MiniCPM 模型家族将会在更多领域发挥重要作用,为人们的生活带来更多便利和乐趣。
模型下载
Huggingface模型下载
https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5
AI快站模型免费加速下载
https://aifasthub.com/models/openbmb
相关文章:
最强端侧多模态模型MiniCPM-V 2.5,8B 参数,性能超越 GPT-4V 和 Gemini Pro
前言 近年来,人工智能领域掀起了一股大模型热潮,然而大模型的巨大参数量级和高昂的算力需求,限制了其在端侧设备上的应用。为了打破这一局限,面壁智能推出了 MiniCPM 模型家族,致力于打造高性能、低参数量的端侧模型。…...
Spring Boot中如何查询PGSQL分表后的数据
数据库用的pgsql,在表数据超过100w条的时候执行定时任务进行了分表,分表后表名命名为原的表名后面拼接时间,如原表名是card_device_trajectory_info,分表后拼接时间后得到card_device_trajectory_info_20240503,然后分…...
如何学习一个新技能
1. 提出想法 2.找到学习方法,学习路径 3.开始学 参考视频:如何成为超速学习者?快速学会任何新技能!_哔哩哔哩_bilibili...
sklearn之logistic回归
文章目录 logistic回归logit logistic回归 logistic regression被称之为logistic回归,对于logistic这个单词来说,他本身的翻译其实不太容易,比较有名的译法是对数几率回归,我也认为这种译法是比较合适的,虽然并非logi…...
Warning: Each child in a list should have a unique “key“ prop.
问题描述: 使用ProTable的时候,报错如下 原因分析: 根据报错内容可以分析出,表格数据缺少唯一key, <PaginationTablecolumns{columns}pagination{{pageSize: 10,current: 1,showSizeChanger: true,showQuickJum…...
JavaSE:StringBuilder和StringBuffer类
1、引言 在上一篇文章中,我们理解了字符串的常用方法,细心的同学大概已经发现,不管是将字符串中的字符转变为大写或小写,或是完成字符串的替换,又或是去除空白字符等等,只要涉及到字符串的修改,…...
C语言在线编程网站:探索编程的奥秘与深度
C语言在线编程网站:探索编程的奥秘与深度 在数字世界的浩瀚海洋中,编程已成为连接现实与虚拟的桥梁。而C语言,作为编程领域的经典之作,其深度与广度令无数探索者着迷。为了满足广大编程爱好者的需求,C语言在线编程网站…...
Android 之广播监听网络变化
网络状态变化监听帮助类 NetBroadcastReceiverHelper public class NetBroadcastReceiverHelper {private static final String TAG "NetBroadcastReceiverHelper";private static final String NET_CHANGE_ACTION "android.net.conn.CONNECTIVITY_CHANGE&qu…...
Hono 框架使用经验谈
Hono🔥是一个小型、快速并开源的 Serverless Web 框架,用 TypeScript 写就。它适用于任何JavaScript运行时:Cloudflare Workers,Fastly ComputeEdge,Deno,Bun,Vercel,Netlify&#x…...
mac 下配置mysql的全局环境变量
前言 如果你还没有安装mysql,请参考这篇文章手把手教你MAC本地数据库的安装与使用:mysql python (pymysql)【一】 - 知乎 正文 1.打开终端,输入命令”echo $SHELL“,显示当前的shell ⚠️本人使用的终端shell是zsh,如果你使用…...
小红书云原生 Kafka 技术剖析:分层存储与弹性伸缩
面对 Kafka 规模快速增长带来的成本、效率和稳定性挑战时,小红书大数据存储团队采取云原生架构实践:通过引入冷热数据分层存储、容器化技术以及自研的负载均衡服务「Balance Control」,成功实现了集群存储成本的显著降低、分钟级的集群弹性迁…...
Python实现解码二进制数据以匹配给定的C++结构体
要在Python中实现解码二进制数据以匹配给定的C结构体Ytest,你需要了解每个字段在结构体中的偏移量(由于结构体内存对齐,这些偏移量可能与字段的顺序和大小不完全对应)。不过,在没有指定内存对齐的情况下,我…...
实施阶段(2024年5月)
【项目活动1】斐波拉契数列第n项的值? 数学思想:第一项和第二项的值都为1,从第三项开始值为前两项的和。 方法一:迭代 迭代变量:f1和f2 迭代表达式:f1,f2f2,f1f2 计数器:i 迭代表达式运算…...
(delphi11最新学习资料) Object Pascal 学习笔记---第13章第3节 (弱引用是系统托管的 )
13.4.2 弱引用是系统托管的 弱引用的托管是一个非常重要的内容。换句话说,系统会在内存中保存一个弱引用列表,当对象被销毁时,系统会检查是否有任何弱引用指向该对象,如果有,系统会将实际引用赋值为 nil࿰…...
安装WordPress
第 1 步:下载并解压 wget https://wordpress.org/latest.tar.gz 然后使用以下命令提取包: tar -xzvf latest.tar.gz 第 2 步:创建数据库 比如数据库名称为wordpress,编码格式为 utf8mb4_general_ci 第 3 步:设置wp-con…...
【STL库源码剖析】list 简单实现
从此音尘各悄然 春山如黛草如烟 目录 list 的结点设计 list 的迭代器 list 的部分框架 迭代器的实现 容量相关相关函数 实现 insert 在指定位置插入 val 实现 push_back 在尾部进行插入 实现 erase 在指定位置删除 实现 pop_back 在尾部进行删除 实现 list 的头插、头删 实现…...
web前端框架设计第十一课-常用插件
web前端框架设计第十一课-常用插件 一.预习笔记 1.路由的基础使用 2.动态路由 3.嵌套路由 二.课堂笔记 三.课后回顾 –行动是治愈恐惧的良药,犹豫拖延将不断滋养恐惧...
Java基础-注解
注解本质是继承了Annotation接口的一个接口 首先,我们通过键值对的形式可以为注解属性赋值,像这样:Hello(value “hello”)。 接着,你用注解修饰某个元素,编译器将在编译期扫描每个类或者方…...
SpringCloud之SSO单点登录-基于Gateway和OAuth2的跨系统统一认证和鉴权详解
单点登录(SSO)是一种身份验证过程,允许用户通过一次登录访问多个系统。本文将深入解析单点登录的原理,并详细介绍如何在Spring Cloud环境中实现单点登录。通过具体的架构图和代码示例,我们将展示SSO的工作机制和优势&a…...
二分查找算法详讲(三种版本写法)原创
介绍: 二分查找算法(Binary Search)是一种在有序数组中查找目标元素的算法。 它的基本思想是通过将目标元素与数组的中间元素进行比较,从而将搜索范围缩小一半。 如果目标元素等于中间元素,则搜索结束;如果目标元素小…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
