相对位姿估计
相对位姿估计
示意图
理论推导
离线数据库:
P的位置 P = [ X , Y , Z ] T P=[X,Y,Z]^{T} P=[X,Y,Z]T
相机内参 k 1 k_{1} k1
安卓手机:
相机内参 k 2 k_{2} k2
两个像素点位置 : p 1 和 p 2 p_1和p_2 p1和p2
公式一:
s 1 p 1 = K 1 P s_1p_1=K_1P s1p1=K1P s 2 p 2 = K 2 ( R P + t ) s_2p_2=K_2(RP+t) s2p2=K2(RP+t)
**公式二:**归一化平面上的坐标
x 1 = K 1 − 1 p 1 x_1=K_1^{-1}p_1 x1=K1−1p1 x 2 = K 2 − 1 p 2 x_2=K_2^{-1}p2 x2=K2−1p2
公式三:
x 2 = R x 1 + t x_2=Rx_1+t x2=Rx1+t
公式四:
t ^ x 2 = t ^ R x 1 \hat{t}x_2=\hat{t}Rx_1 t^x2=t^Rx1
公式五
x 2 T t ^ x 2 = x 2 T t ^ R x 1 x_2^{T}\hat{t}x_2=x_2^{T}\hat{t}Rx_1 x2Tt^x2=x2Tt^Rx1
x 2 T t ^ R x 1 = 0 x_2^{T}\hat{t}Rx_1=0 x2Tt^Rx1=0
公式六:
( K 2 − 1 p 2 ) T t ^ R K 1 − 1 p 1 (K_2^{-1}p_2)^{T}\hat{t}RK_1^{-1}p_1 (K2−1p2)Tt^RK1−1p1
结论:
本质矩阵: E = t ^ R E=\hat{t}R E=t^R ---------------------已知相机参数的情况下
基础矩阵: F = K 2 − T E K 1 − 1 F=K_2^{-T}EK_1^{-1} F=K2−TEK1−1 -----------未知相机参数的情况下
伪代码
input:image_src,k_src,image_dst,k_dst
output:R,t
1 feature_detect(image_src,image_dst)---->keypoints and deccriptors
2 feature_match(image_src,image_dst)---->matched_features
3 find_essentialmatrix(matched_keypoints,k_src,k_dst)----->essential_matrix
4 decompose_E(essentialmatrix)----->R,t
5 judge "left or right"
实现代码
import cv2
import numpy as npdef find_keypoints_and_descriptors(image):# 使用SIFT算法检测关键点和计算描述符sift = cv2.SIFT_create()keypoints, descriptors = sift.detectAndCompute(image, None)return keypoints, descriptorsdef match_keypoints(descriptors1, descriptors2):# 使用FLANN匹配器进行关键点匹配FLANN_INDEX_KDTREE = 0index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)search_params = dict(checks=50)flann = cv2.FlannBasedMatcher(index_params, search_params)matches = flann.knnMatch(descriptors1, descriptors2, k=2)# 保留良好的匹配good_matches = []for m, n in matches:if m.distance < 0.7 * n.distance:good_matches.append(m)return good_matchesdef estimate_relative_pose(keypoints1, keypoints2, good_matches, camera_matrix_src, camera_matrix_dst):# 提取匹配点对应的关键点src_pts = np.float32([keypoints1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)dst_pts = np.float32([keypoints2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)# 使用基础矩阵估计相机的相对位姿essential_matrix, _ = cv2.findEssentialMat(src_pts, dst_pts, camera_matrix_src, None, camera_matrix_dst, None, cv2.RANSAC, 0.999, 1.0)# 从基础矩阵中恢复旋转和平移矩阵_, R, t, _ = cv2.recoverPose(essential_matrix, src_pts, dst_pts, camera_matrix_src)return R, tdef determine_camera_direction(t, R):# 打印平移向量print(f"平移向量 t: {t}")# 计算旋转矩阵的欧拉角angles = cv2.Rodrigues(R)[0]yaw = np.arctan2(angles[1, 0], angles[0, 0]) * 180.0 / np.pi# 联合判断相机的方向if t[0] > 0 and yaw > 0:print("相机偏向右侧, 您应该向左转")elif t[0] < 0 and yaw < 0:print("相机偏向左侧,您应该向右转")elif t[0] > 0 and yaw < 0:print("相机偏向右侧, 但是角度偏向左")elif t[0] < 0 and yaw > 0:print("相机偏向左侧, 但是角度偏向右")else:print("相机方向正前方")print(f"X方向平移: {t[0]}, Y方向平移: {t[1]}, Z方向平移: {t[2]}")print(f"Yaw 角度: {yaw}")def main():# 加载两张图片image1 = cv2.imread('/media/k1928-3/028efb59-765e-462b-8aa6-085565fa80eb/hxy/biaoding/weiziguji/DJI_0273.JPG', cv2.IMREAD_GRAYSCALE)image2 = cv2.imread('/media/k1928-3/028efb59-765e-462b-8aa6-085565fa80eb/hxy/biaoding/weiziguji/phone/ori_right.jpg', cv2.IMREAD_GRAYSCALE)# 假设你已知相机内参----数据库相机fx_src = 4282.03fy_src = 2960.54cx_src = 844.20cy_src = 552.00camera_matrix_src = np.array([[fx_src, 0, cx_src],[0, fy_src, cy_src],[0, 0, 1]], dtype=float)# 手机相机fx_dst = 2934.52fy_dst = 2934.89cx_dst = 1466.29cy_dst = 2020.34camera_matrix_dst = np.array([[fx_dst, 0, cx_dst],[0, fy_dst, cy_dst],[0, 0, 1]], dtype=float)# 检测关键点和计算描述符keypoints1, descriptors1 = find_keypoints_and_descriptors(image1)keypoints2, descriptors2 = find_keypoints_and_descriptors(image2)# 匹配关键点good_matches = match_keypoints(descriptors1, descriptors2)# 估计相机的相对位姿R, t = estimate_relative_pose(keypoints1, keypoints2, good_matches, camera_matrix_src, camera_matrix_dst)# 联合判断相机的方向determine_camera_direction(t, R)if __name__ == "__main__":main()
##八点法
import cv2
import numpy as np
import timedef find_keypoints_and_descriptors(image):# 使用SIFT算法检测关键点和计算描述符sift = cv2.SIFT_create()keypoints, descriptors = sift.detectAndCompute(image, None)return keypoints, descriptorsdef match_keypoints(descriptors1, descriptors2):# 使用FLANN匹配器进行关键点匹配FLANN_INDEX_KDTREE = 0index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)search_params = dict(checks=50)flann = cv2.FlannBasedMatcher(index_params, search_params)matches = flann.knnMatch(descriptors1, descriptors2, k=2)# 保留良好的匹配good_matches = []for m, n in matches:if m.distance < 0.7 * n.distance:good_matches.append(m)return good_matchesdef estimate_relative_pose_eight_point(keypoints1, keypoints2, good_matches, camera_matrix_src, camera_matrix_dst):# 提取匹配点对应的关键点src_pts = np.float32([keypoints1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)dst_pts = np.float32([keypoints2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)# 计算基础矩阵fundamental_matrix, _ = cv2.findFundamentalMat(src_pts, dst_pts, cv2.FM_8POINT)# 计算本质矩阵essential_matrix = camera_matrix_dst.T @ fundamental_matrix @ camera_matrix_src# 从本质矩阵中恢复旋转和平移矩阵_, R, t, _ = cv2.recoverPose(essential_matrix, src_pts, dst_pts, camera_matrix_src)return R, tdef determine_camera_direction(t, R):# 打印平移向量print(f"平移向量 t: {t}")# 计算旋转矩阵的欧拉角angles = cv2.Rodrigues(R)[0]yaw = np.arctan2(angles[1, 0], angles[0, 0]) * 180.0 / np.pi# 联合判断相机的方向if t[0] > 0 and yaw > 0:print("人在走廊中轴线左侧, 手机摄像头角度偏右,您应该向右走,应将手机向左偏")elif t[0] < 0 and yaw < 0:print("人在走廊中轴线右侧,手机摄像头角度偏左,您应该向左走,应将手机向右偏")elif t[0] > 0 and yaw < 0:print("人在走廊中轴线左侧, 手机摄像头角度偏左,您应该向右走,应将手机向右偏")elif t[0] < 0 and yaw > 0:print("人在走廊中轴线右侧,手机摄像头角度偏右,您应该向左走,应将手机向左偏")else:print("相机方向正前方")print(f"X方向平移: {t[0]}, Y方向平移: {t[1]}, Z方向平移: {t[2]}")print(f"Yaw 角度: {yaw}")def main():# 加载两张图片image1 = cv2.imread('/media/k1928-3/028efb59-765e-462b-8aa6-085565fa80eb/hxy/biaoding/weiziguji/DJI_0273.JPG', cv2.IMREAD_GRAYSCALE)image2 = cv2.imread('/media/k1928-3/028efb59-765e-462b-8aa6-085565fa80eb/hxy/biaoding/weiziguji/phone/ori_right.jpg', cv2.IMREAD_GRAYSCALE)# 假设你已知相机内参----数据库相机fx_src = 4282.03fy_src = 2960.54cx_src = 844.20cy_src = 552.00camera_matrix_src = np.array([[fx_src, 0, cx_src],[0, fy_src, cy_src],[0, 0, 1]], dtype=float)# 手机相机fx_dst = 2934.52fy_dst = 2934.89cx_dst = 1466.29cy_dst = 2020.34camera_matrix_dst = np.array([[fx_dst, 0, cx_dst],[0, fy_dst, cy_dst],[0, 0, 1]], dtype=float)# 检测关键点和计算描述符keypoints1, descriptors1 = find_keypoints_and_descriptors(image1)keypoints2, descriptors2 = find_keypoints_and_descriptors(image2)# 匹配关键点good_matches = match_keypoints(descriptors1, descriptors2)# 记录开始时间start_time = time.time()# 使用八点法估计相机的相对位姿R, t = estimate_relative_pose_eight_point(keypoints1, keypoints2, good_matches, camera_matrix_src, camera_matrix_dst)# 联合判断相机的方向determine_camera_direction(t, R)# 记录结束时间并计算总时间end_time = time.time()elapsed_time = (end_time - start_time) * 1000 # 转换为毫秒print(f"求解位姿总耗时:{elapsed_time:.6f} 毫秒")if __name__ == "__main__":main()
注意:提取特征的时间是6s,特征匹配的时间是6秒,求解位姿的旋转和平移,所需要的时间不多
相关文章:

相对位姿估计
相对位姿估计 示意图 理论推导 离线数据库: P的位置 P [ X , Y , Z ] T P[X,Y,Z]^{T} P[X,Y,Z]T 相机内参 k 1 k_{1} k1 安卓手机: 相机内参 k 2 k_{2} k2 两个像素点位置 : p 1 和 p 2 p_1和p_2 p1和p2 公式一:…...

记一次 .NET某工业设计软件 崩溃分析
一:背景 1. 讲故事 前些天有位朋友找到我,说他的软件在客户那边不知道什么原因崩掉了,从windows事件日志看崩溃在 clr 里,让我能否帮忙定位下,dump 也抓到了,既然dump有了,接下来就上 windbg …...

2020 6.s081——Lab5:Lazy page allocation
再来是千年的千年 不变是眷恋的眷恋 飞越宇宙无极限 我们永不说再见 ——超兽武装 完整代码见:SnowLegend-star/6.s081 at lazy (github.com) Eliminate allocation from sbrk() (easy) 顾名思义,就是去掉sbrk()中调用growproc()的部分。1s完事儿。 Laz…...

华为认证学习笔记:生成树
以太网交换网络中为了进行链路备份,提高网络可靠性,通常会使用冗余链路。但是使用冗余链路会在交换网络上产生环路,引发广播风暴以及MAC地址表不稳定等故障现象,从而导致用户通信质量较差,甚至通信中断。为解决交换网络…...

leetcode 97.交错字符串
思路:LCS 其实也是同一个类型的题目,一般涉及到这种子序列的字符串问题的时候,状态的设置基本上都应该是以...结尾为状态的。这里同样,设置用dp[i][j]为s1,s2字符以i,j结尾能否拼接成s3[ij]。 那么,首先就…...

The Missing Semester ( Shell 工具和脚本 和 Vim)
管道符号 (1)管道符号 | 将前一个命令的输出作为下一个命令的输入 例如: 以下为 ./semester输出中提取包含 "Last-Modified" 的行并写入文件 last-modified.txt./semester | grep "Last-Modified" > ~/last-modif…...

【Uniapp微信小程序】自定义水印相机、微信小程序地点打卡相机
效果图 template 下方的image图片自行寻找替换! <template><view><camerav-if"!tempImagePath && cameraHeight ! 0":resolution"high":frame-size"large":device-position"device":flash"f…...

SimPO: Simple Preference Optimization with a Reference-Free Reward
https://github.com/princeton-nlp/SimPO 简单代码 class simpo(paddle.nn.Layer):def __init__(self):super(OrPoLoss, self).__init__()self.loss paddle.nn.CrossEntropyLoss()def forward(self,neg_logit, neg_lab, pos_logit, pos_lab,beta,gamma):neg_logit paddle.n…...

CDH6.3.2安装文档
前置环境: 操作系统: CentOS Linux release 7.7 java JDK : 1.8.0_231 1、准备工作 准备以下安装包: Cloudera Manager: cloudera-manager-agent-6.3.1-1466458.el7.x86_64.rpm cloudera-manager-daemons-6.3.1-1466458.el…...

Java实战入门:深入解析Java中的 `Arrays.sort()` 方法
文章目录 一、方法定义参数说明返回值 二、使用场景三、实现原理四、示例代码示例一:对整型数组排序示例二:对字符串数组排序示例三:对自定义对象数组排序 五、注意事项六、总结 在Java编程中,Arrays.sort() 方法是一个非常常用的…...

JavaScript的垃圾回收机制
No.内容链接1Openlayers 【入门教程】 - 【源代码示例300】 2Leaflet 【入门教程】 - 【源代码图文示例 150】 3Cesium 【入门教程】 - 【源代码图文示例200】 4MapboxGL【入门教程】 - 【源代码图文示例150】 5前端就业宝典 【面试题详细答案 1000】 文章目录 一、垃圾…...

小程序使用Canvas设置文字竖向排列
在需要使用的js页面引入js文件,传入对应参数即可 /** * 文本竖向排列 */ function drawTextVertical(context, text, x, y) {var arrText text.split();var arrWidth arrText.map(function (letter) {return 26; // 字体间距,需要自定义可以自己加参数,根据传入参数进行…...

GPT-4o:重塑人机交互的未来
一个愿意伫立在巨人肩膀上的农民...... 一、推出 在人工智能(AI)领域,自然语言处理(NLP)技术一直被视为连接人类与机器的桥梁。近年来,随着深度学习技术的快速发展,NLP领域迎来了前所未有的变革…...

大语言模型拆解——Tokenizer
1. 认识Tokenizer 1.1 为什么要有tokenizer? 计算机是无法理解人类语言的,它只会进行0和1的二进制计算。但是呢,大语言模型就是通过二进制计算,让你感觉计算机理解了人类语言。 举个例子:单1,双2&#x…...

Linux自动挂载服务autofs讲解
1.产生原因 2.配置文件讲解 总结:配置客户端,先构思好要挂载的目录如:/abc/cb 然后在autofs.master中编辑: /abc(要挂载的主目录) /etc/qwe(在这个文件里去找要挂载的副目录,这个名…...

堆结构知识点复习——玩转堆结构
前言:堆算是一种相对简单的数据结构, 本篇文章将详细的讲解堆中的知识点, 包括那些我们第一次学习堆的时候容易忽略的内容, 本篇文章会作为重点详细提到。 本篇内容适合已经学完C语言数组和函数部分的友友们观看。 目录 什么是堆 建堆算法…...

JS数据类型运算符标准库
目录 数据类型运算符标准库对象Object对象属性描述对象Array对象包装对象Boolean对象Number对象String对象Math对象Date对象...

单片机之从C语言基础到专家编程 - 4 C语言基础 - 4.13数组
C语言中,有一类数据结构,它可以存储一组相同类型的元素,并且可以通过索引访问这些元素,没错,这类数据结构就是数组。数组可以说是C语言中非常重要的数据结构之一了。使用数组可以是程序逻辑更加清晰,也更加…...

【码银送书第二十期】《游戏运营与出海实战:策略、方法与技巧》
市面上的游戏品种繁杂,琳琅满目,它们是如何在历史的长河中逐步演变成今天的模式的呢?接下来,我们先回顾游戏的发展史,然后按照时间轴来叙述游戏运营的兴起。 作者:艾小米 本文经机械工业出版社授权转载&a…...

String 类
目录: 一. 认识 String 类 二. String 类的基本用法 三. String对象的比较 四.字符串的不可变性 五. 认识 StringBuffer 和 StringBuilder 一. 认识 String 类: 在C语言中已经涉及到字符串了,但是在C语言中要表示字符串只能使用字符数组或者…...

Chromebook Plus中添加了Gemini?
Chromebook Plus中添加了Gemini? 前言 就在5月29日,谷歌宣布了一项重大更新,将其Gemini人工智能技术集成到Chromebook Plus笔记本电脑中。这项技术此前已应用于谷歌的其他设备。华硕和惠普已经在市场上销售的Chromebook Plus机型,…...

Git Large File Storage (LFS) 的安装与使用
Git Large File Storage [LFS] 的安装与使用 1. An open source Git extension for versioning large files2. Installing on Linux using packagecloud3. Getting Started4. Error: Failed to call git rev-parse --git-dir: exit status 128References 1. An open source Git…...

使用国产工作流引擎,有那些好处?
使用国产工作流引擎的好处主要体现在以下几个方面: 符合企业独特业务: 国产工作流引擎可以深入挖掘和理解企业内部各项业务流程,精细化地定义流程模型和规则,实现“以流程驱动业务”的目标。这有助于企业更好地满足其独特的业务…...

掌握 Go 语言:使用 net/http/httptrace 包优化HTTP请求
掌握 Go 语言:使用 net/http/httptrace 包优化HTTP请求 介绍net/http/httptrace 包的基础概述适用场景 使用httptrace进行网络请求追踪配置httptrace的基本步骤示例:创建一个简单的HTTP客户端,使用httptrace监控连接 示例:追踪HTT…...

探秘Flask中的表单数据处理
新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、引言 二、Flask中的表单处理机制 三、Flask表单处理实战 四、处理表单数据的注意事项…...

java —— 包装类及拆箱、装箱
java 当中有 8 种基本类型对应其相应的包装类,分别如下: intIntegerbyteByteshortShortlongLongfloatFloatdoubleDoublecharCharacterbooleanBoolean 一、装箱 两种装箱方法: public static void main(String[] args) {Integer anew Inte…...

运算符重载(下)
目录 前置和后置重载前置的实现Date& Date::operator()代码 后置的实现Date Date::operator(int )代码 前置--和后置--重载前置--的实现Date& Date::operator--( )代码 后置--的实现Date Date::operator--(int )代码 流插入运算符重载流插入运算符重载的实现流提取运算…...

杭州服务器的性能如何?
挥洒激情,开启杭州服务器的无限可能! 互联网时代,服务器的性能就如同一艘航空母舰,承载着企业的发展梦想,指引着行业的发展方向。而对于杭州服务器,其性能究竟如何?让我来告诉您。 杭州服务器…...

linux centos nfs挂载两台服务器挂载统一磁盘目录权限问题
查看用户id id 用户名另一台为 修改uid和gid为相同id,添加附加组 usermod -u500 -Gwheel epms groupmod -g500 epms...

STL:string
文章目录 标准库中的string类string的构造string的赋值重载string的容量size(length)max_sizeresizereservecapacityclearemptyshink_to_fit string的元素访问operator[] 和 atfront 和 back string的迭代器 和 范围forstring的修改operatorappendpush_backassigninserterasere…...