当前位置: 首页 > news >正文

SA316系列音频传输模块-传输距离升级音质不打折

 SA316是思为无线研发的一款远距离音频传输模块,音频采样率为48K,传输距离可达200M。为了满足更多用户需求,思为无线在SA316基础上进一步增加传输距离推出SA316F30。相比SA316性能,同样其采用48K采样,-96dBm灵敏度,其传输距离可达1500米。

SA316F30同SA316一样 ,可以和音频接收模块SA316-RX搭配使用组成一套远距离音频收发方案。该系列方案采用了无线高品质的语音传输芯片来设计,它可以支持外部 PCM / IIS 双模数字音频接口,同时模块为客户提供了标准化的串行接口,使用者可通过串口指令简单快捷地来设置模块的收发频率、声音大小和咪头增益等参数,邮票孔设计方便嵌入式,在对音质要求比较高的场合广泛应用。

此次SA316系列音频模块传输距离升级,保持了SA316低功耗、体积小、高保真传、低延时特点。接收音频输出与SA316一样延时小于3ms,数据采用32位加密输入。

 SA316F30产品特点

  1. UHF频段:500MHz/868 MHz/915MHz
  2. 可定制450~980 MHz
  3. VHF频段:160~270 MHz
  4. SA316F30-TX开阔地传输距离为1500米
  5. 接收灵敏度:-96 dBm
  6. 音频信躁比:96 dB
  7. 频率响应:30 Hz-20 KHz
  8. 从麦克风输入到音频输出延迟小于 3ms
  9. 数字调制方式:pi/4 DQPSK;
  10. 占用带宽:<300 KHz;
  11. 传输速率 204.8 Ksps
  12. 采样率:48 KHz

 综上,此次SA316系列产品在传输距离方面有了显著的提升,最远可达1500米,这使得SA316F30在更广泛的应用场景下变得更具吸引力,例如大型会议室、演艺场所、体育场馆等需要长距离音频传输的场所。如需了解更多请联系思为无线科技

相关文章:

SA316系列音频传输模块-传输距离升级音质不打折

SA316是思为无线研发的一款远距离音频传输模块&#xff0c;音频采样率为48K&#xff0c;传输距离可达200M。为了满足更多用户需求&#xff0c;思为无线在SA316基础上进一步增加传输距离推出SA316F30。相比SA316性能&#xff0c;同样其采用48K采样&#xff0c;-96dBm灵敏度&…...

【机器学习】智能选择的艺术:决策树在机器学习中的深度剖析

在机器学习的分类和回归问题中&#xff0c;决策树是一种广泛使用的算法。决策树模型因其直观性、易于理解和实现&#xff0c;以及处理分类和数值特征的能力而备受欢迎。本文将解释决策树算法的概念、原理、应用、优化方法以及未来的发展方向。 &#x1f680;时空传送门 &#x…...

电脑缺少运行库,无法启动程序

在我们使用一些软件的时候&#xff0c;由于电脑缺少一些运行库&#xff0c;导致无法启动应用软件&#xff0c;此时需要我们安装缺少的运行库。 比如当电脑提示&#xff1a; Cannot load library Qt5Xlsx.dll 我们就需要下载C得运行库&#xff0c;以满足软件运行需要。 下载链…...

【计算机软考_初级篇】每日十题2

各位老师大家好&#xff0c;软考对于日常的知识储备和企业中的考试&#xff0c;或者说在校大学生来说&#xff0c;那用处是非常大的&#xff01;&#xff01;那么下面我们进入正题&#xff0c;软考呢是分两种语言&#xff0c;java和C&#xff0c;对于其他语言目前还没&#xff…...

HR人才测评,如何做营销人员岗位素质测评?

营销人员是企业中的重要角色&#xff0c;他们直接负责企业产品或服务的销售和推广&#xff0c;是企业中最直接影响销售业绩的人才之一。因此&#xff0c;营销人员的基本素质测评非常重要&#xff0c;能够有效评估营销人员的能力和潜力&#xff0c;为企业招聘和培养优秀的营销人…...

LabVIEW调用第三方硬件DLL常见问题及开发流程

在LabVIEW中调用第三方硬件DLL时&#xff0c;除了技术问题&#xff0c;还涉及开发流程、资料获取及与厂家的沟通协调。常见问题包括函数接口不兼容、数据类型转换错误、内存管理问题、线程安全性等。解决这些问题需确保函数声明准确、数据类型匹配、正确的内存管理及线程保护。…...

datax实现MySQL数据库迁移shell自动化脚本

datax实现MySQL数据库迁移 &#xff08;1&#xff09;生成python脚本 # codingutf-8 import json import getopt import os import sys import MySQLdb#MySQL相关配置&#xff0c;需根据实际情况作出修改 mysql_host "xxxx" mysql_port "3306" mysql_u…...

PostgreSQL的学习心得和知识总结(一百四十四)|深入理解PostgreSQL数据库之sendTuples的实现原理及功能修改

目录结构 注&#xff1a;提前言明 本文借鉴了以下博主、书籍或网站的内容&#xff0c;其列表如下&#xff1a; 1、参考书籍&#xff1a;《PostgreSQL数据库内核分析》 2、参考书籍&#xff1a;《数据库事务处理的艺术&#xff1a;事务管理与并发控制》 3、PostgreSQL数据库仓库…...

C++数据结构之:链List

摘要&#xff1a; it人员无论是使用哪种高级语言开发东东&#xff0c;想要更高效有层次的开发程序的话都躲不开三件套&#xff1a;数据结构&#xff0c;算法和设计模式。数据结构是相互之间存在一种或多种特定关系的数据元素的集合&#xff0c;即带“结构”的数据元素的集合&am…...

10.Redis之set类型

谈到一个术语,这个术语很可能有多种含义~~ 1.Set 1) 集合. 2)设置 (和 get 相对应) 集合就是把一些有关联的数据放到一起~~ 1.集合中的元素是无序的! 【此处说的无序和 前面list这里的有序 是对应的, 有序: 顺序很重要. 变换一下顺序, 就是不同的 list 了 无序: 顺序不…...

SpringBoot + mongodb 删除集合中的数据

MongoTemplate是Spring Data MongoDB提供的一个工具类&#xff0c;用于与MongoDB进行交互。它提供了许多方法来执行数据库操作&#xff0c;包括删除数据。 本文将介绍如何使用Java MongoTemplate删除集合内的数据&#xff0c;并提供相应的代码示例。 1. 引入MongoTemplate 首…...

【日常记录】【JS】前端预览图片的两种方式,Base64预览和blob预览

文章目录 1、前言1、FileReader3、window.URL.createObjectURL4、参考链接 1、前言 一般来说&#xff0c;都是 后端返回给前端图片的url&#xff0c;前端直接把这个值插入到 img 的src 里面即可还有一种情况是前端需要预览一下图片&#xff0c;比如&#xff1a;上传头像按钮&a…...

每日刷题——杭电2156.分数矩阵和杭电2024.C语言合法标识符

杭电2156.分数矩阵 原题链接&#xff1a;Problem - 2156 题目描述 Problem Description&#xff1a;我们定义如下矩阵: 1/1 1/2 1/3 1/2 1/1 1/2 1/3 1/2 1/1 矩阵对角线上的元素始终是1/1&#xff0c;对角线两边分数的分母逐个递增。请求出这个矩阵的总和。 Input&#xf…...

爬虫学习--18.反爬斗争 selenium(3)

操作多窗口与页面切换 有时候窗口中有很多子tab页面。这时候肯定是需要进行切换的。selenium提供了一个叫做switch_to.window来进行切换&#xff0c;具体切换到哪个页面&#xff0c;可以从driver.window_handles中找到。 from selenium import webdriver from selenium.webdri…...

如何评价GPT-4o?

GPT-4o是OpenAI为聊天机器人ChatGPT发布的一款新语言模型&#xff0c;其名称中的“o”代表Omni&#xff0c;即全能的意思&#xff0c;凸显了其多功能的特性。这款模型在多个方面都有着显著的优势和进步。 首先&#xff0c;GPT-4o具有极强的多模态能力&#xff0c;它能够接受文本…...

算能BM1684+FPGA+AI+Camera推理边缘计算盒

搭载算丰智算芯片BM1684&#xff0c;是面向AI推理的边缘计算盒。高效适配市场上所有AI算法&#xff0c;实现视频结构化、人脸识别、行为分析、状态监测等应用&#xff0c;为智慧城市、智慧交通、智慧能源、智慧金融、智慧电信、智慧工业等领域进行AI赋能。 产品规格 处理器芯片…...

不同厂商SOC芯片在视频记录仪领域的应用

不同SoC公司芯片在不同产品上的应用信息&#xff1a; 大唐半导体 芯片型号: LC1860C (主控) LC1160 (PMU)产品应用: 红米2A (399元)大疆晓Spark技术规格: 28nm工艺&#xff0c;4个ARM Cortex-A7处理器&#xff0c;1.5GHz主频&#xff0c;2核MaliT628 GPU&#xff0c;1300万像…...

【Python入门学习笔记】Python3超详细的入门学习笔记,非常详细(适合小白入门学习)

Python3基础 想要获取pdf或markdown格式的笔记文件点击以下链接获取 Python入门学习笔记点击我获取 1&#xff0c;Python3 基础语法 1-1 编码 默认情况下&#xff0c;Python 3 源码文件以 UTF-8 编码&#xff0c;所有字符串都是 unicode 字符串。 当然你也可以为源码文件指…...

通用代码生成器应用场景三,遗留项目反向工程

通用代码生成器应用场景三&#xff0c;遗留项目反向工程 如果您有一个遗留项目&#xff0c;要重新开发&#xff0c;或者源代码遗失&#xff0c;或者需要重新开发&#xff0c;但是希望复用原来的数据&#xff0c;并加快开发。 如果您的项目是通用代码生成器生成的&#xff0c;…...

轻量级动态可监控线程池 - DynamicTp

一、背景介绍 使用线程池ThreadPoolExecutor的过程中你是否有以下痛点呢&#xff1f; 代码中创建了一个 ThreadPoolExecutor&#xff0c;但是不知道那几个核心参数设置多少比较合适凭经验设置参数值&#xff0c;上线后发现需要调整&#xff0c;改代码重新发布服务&#xff0c…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...

StarRocks 全面向量化执行引擎深度解析

StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计&#xff0c;相比传统行式处理引擎&#xff08;如MySQL&#xff09;&#xff0c;性能可提升 5-10倍。以下是分层拆解&#xff1a; 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...

高保真组件库:开关

一:制作关状态 拖入一个矩形作为关闭的底色:44 x 22,填充灰色CCCCCC,圆角23,边框宽度0,文本为”关“,右对齐,边距2,2,6,2,文本颜色白色FFFFFF。 拖拽一个椭圆,尺寸18 x 18,边框为0。3. 全选转为动态面板状态1命名为”关“。 二:制作开状态 复制关状态并命名为”开…...