当前位置: 首页 > news >正文

一文彻底讲透 PyTorch

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。

汇总合集:

《AIGC 面试宝典》(2024版) 发布!

《大模型面试宝典》(2024版) 发布!


大模型的火热,彻底把PyTorch带火,Tensorflow 最近落寞了很多。想学会大模型,PyTorch 是必需要学的工具之一。

PyTorch 是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。

考虑到PyTorch的学习兼具理论储备和动手训练,两手都要抓两手都要硬的特点,我梳理一份《深入浅出 PyTorch 》,帮助大家从入门到熟练掌握 PyTorch 工具,进而实现自己的深度学习算法。

需要《深入浅出 PyTorch 》,可以加入我们技术群获取。

技术交流

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:深入浅出 PyTorch
方式②、添加微信号:mlc2040,备注:深入浅出 PyTorch +CSDN

在这里插入图片描述

内容简介

  • 第零章:前置知识
    • 人工智能简史
    • 相关评价指标
    • 常用包的学习
    • Jupyter相关操作
  • 第一章:PyTorch的简介和安装
    • PyTorch简介
    • PyTorch的安装
    • PyTorch相关资源简介
  • 第二章:PyTorch基础知识
    • 张量及其运算
    • 自动求导简介
    • 并行计算、CUDA和cuDNN简介
  • 第三章:PyTorch的主要组成模块
    • 思考:完成一套深度学习流程需要哪些关键环节
    • 基本配置
    • 数据读入
    • 模型构建
    • 损失函数
    • 优化器
    • 训练和评估
    • 可视化
  • 第四章:PyTorch基础实战
    • 基础实战——Fashion-MNIST时装分类
    • 基础实战——果蔬分类实战(notebook)
  • 第五章:PyTorch模型定义
    • 模型定义方式
    • 利用模型块快速搭建复杂网络
    • 模型修改
    • 模型保存与读取
  • 第六章:PyTorch进阶训练技巧
    • 自定义损失函数
    • 动态调整学习率
    • 模型微调-torchvision
    • 模型微调-timm
    • 半精度训练
    • 数据扩充
    • 超参数的修改及保存
    • PyTorch模型定义与进阶训练技巧
  • 第七章:PyTorch可视化
    • 可视化网络结构
    • 可视化CNN卷积层
    • 使用TensorBoard可视化训练过程
    • 使用wandb可视化训练过程
  • 第八章:PyTorch生态简介
    • 简介
    • 图像—torchvision
    • 视频—PyTorchVideo
    • 文本—torchtext
    • 音频-torchaudio
  • 第九章:模型部署
    • 使用ONNX进行部署并推理
  • 第十章:常见网络代码的解读(推进中)
    • 计算机视觉
      • 图像分类
        • ResNet源码解读
        • Swin Transformer源码解读
        • Vision Transformer源码解读
        • RNN源码解读
        • LSTM源码解读及其实战
      • 目标检测
        • YOLO系列解读
      • 图像分割
    • 自然语言处理
      • RNN源码解读
    • 音频处理
    • 视频处理
    • 其他

部分内容展示

在深度学习模型的训练中,权重的初始值极为重要。一个好的初始值,会使模型收敛速度提高,使模型准确率更精确。一般情况下,我们不使用全0初始值训练网络。为了利于训练和减少收敛时间,我们需要对模型进行合理的初始化。PyTorch也在torch.nn.init中为我们提供了常用的初始化方法。
通过本章学习,你将学习到以下内容:

  • 常见的初始化函数
  • 初始化函数的使用

torch.nn.init内容

通过访问torch.nn.init的官方文档链接 ,我们发现torch.nn.init提供了以下初始化方法:
1 . torch.nn.init.uniform_(tensor, a=0.0, b=1.0)
2 . torch.nn.init.normal_(tensor, mean=0.0, std=1.0)
3 . torch.nn.init.constant_(tensor, val)
4 . torch.nn.init.ones_(tensor)
5 . torch.nn.init.zeros_(tensor)
6 . torch.nn.init.eye_(tensor)
7 . torch.nn.init.dirac_(tensor, groups=1)
8 . torch.nn.init.xavier_uniform_(tensor, gain=1.0)
9 . torch.nn.init.xavier_normal_(tensor, gain=1.0)
10 . torch.nn.init.kaiming_uniform_(tensor, a=0, mode=‘fan__in’, nonlinearity=‘leaky_relu’)
11 . torch.nn.init.kaiming_normal_(tensor, a=0, mode=‘fan_in’, nonlinearity=‘leaky_relu’)
12 . torch.nn.init.orthogonal_(tensor, gain=1)
13 . torch.nn.init.sparse_(tensor, sparsity, std=0.01)
14 . torch.nn.init.calculate_gain(nonlinearity, param=None)
关于计算增益如下表:

nonlinearitygain
Linear/Identity1
Conv{1,2,3}D1
Sigmod1
Tanh5/3
ReLUsqrt(2)
Leaky Relusqrt(2/1+neg_slop^2)

我们可以发现这些函数除了calculate_gain,所有函数的后缀都带有下划线,意味着这些函数将会直接原地更改输入张量的值。

torch.nn.init使用

我们通常会根据实际模型来使用torch.nn.init进行初始化,通常使用isinstance()来进行判断模块(回顾3.4模型构建)属于什么类型。

import torch
import torch.nn as nnconv = nn.Conv2d(1,3,3)
linear = nn.Linear(10,1)isinstance(conv,nn.Conv2d) # 判断conv是否是nn.Conv2d类型
isinstance(linear,nn.Conv2d) # 判断linear是否是nn.Conv2d类型
True
False

对于不同的类型层,我们就可以设置不同的权值初始化的方法。

# 查看随机初始化的conv参数
conv.weight.data
# 查看linear的参数
linear.weight.data
tensor([[[[ 0.1174,  0.1071,  0.2977],[-0.2634, -0.0583, -0.2465],[ 0.1726, -0.0452, -0.2354]]],[[[ 0.1382,  0.1853, -0.1515],[ 0.0561,  0.2798, -0.2488],[-0.1288,  0.0031,  0.2826]]],[[[ 0.2655,  0.2566, -0.1276],[ 0.1905, -0.1308,  0.2933],[ 0.0557, -0.1880,  0.0669]]]])tensor([[-0.0089,  0.1186,  0.1213, -0.2569,  0.1381,  0.3125,  0.1118, -0.0063, -0.2330,  0.1956]])
# 对conv进行kaiming初始化
torch.nn.init.kaiming_normal_(conv.weight.data)
conv.weight.data
# 对linear进行常数初始化
torch.nn.init.constant_(linear.weight.data,0.3)
linear.weight.data
tensor([[[[ 0.3249, -0.0500,  0.6703],[-0.3561,  0.0946,  0.4380],[-0.9426,  0.9116,  0.4374]]],[[[ 0.6727,  0.9885,  0.1635],[ 0.7218, -1.2841, -0.2970],[-0.9128, -0.1134, -0.3846]]],[[[ 0.2018,  0.4668, -0.0937],[-0.2701, -0.3073,  0.6686],[-0.3269, -0.0094,  0.3246]]]])
tensor([[0.3000, 0.3000, 0.3000, 0.3000, 0.3000, 0.3000, 0.3000, 0.3000, 0.3000,0.3000]])

初始化函数的封装

人们常常将各种初始化方法定义为一个initialize_weights()的函数并在模型初始后进行使用。

def initialize_weights(model):for m in model.modules():# 判断是否属于Conv2dif isinstance(m, nn.Conv2d):torch.nn.init.zeros_(m.weight.data)# 判断是否有偏置if m.bias is not None:torch.nn.init.constant_(m.bias.data,0.3)elif isinstance(m, nn.Linear):torch.nn.init.normal_(m.weight.data, 0.1)if m.bias is not None:torch.nn.init.zeros_(m.bias.data)elif isinstance(m, nn.BatchNorm2d):m.weight.data.fill_(1) 		 m.bias.data.zeros_()	

这段代码流程是遍历当前模型的每一层,然后判断各层属于什么类型,然后根据不同类型层,设定不同的权值初始化方法。我们可以通过下面的例程进行一个简短的演示:

# 模型的定义
class MLP(nn.Module):# 声明带有模型参数的层,这里声明了两个全连接层def __init__(self, **kwargs):# 调用MLP父类Block的构造函数来进行必要的初始化。这样在构造实例时还可以指定其他函数super(MLP, self).__init__(**kwargs)self.hidden = nn.Conv2d(1,1,3)self.act = nn.ReLU()self.output = nn.Linear(10,1)# 定义模型的前向计算,即如何根据输入x计算返回所需要的模型输出def forward(self, x):o = self.act(self.hidden(x))return self.output(o)mlp = MLP()
print(mlp.hidden.weight.data)
print("-------初始化-------")mlp.apply(initialize_weights)
# 或者initialize_weights(mlp)
print(mlp.hidden.weight.data)
tensor([[[[ 0.3069, -0.1865,  0.0182],[ 0.2475,  0.3330,  0.1352],[-0.0247, -0.0786,  0.1278]]]])
"-------初始化-------"
tensor([[[[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]]]])

注意:
我们在初始化时,最好不要将模型的参数初始化为0,因为这样会导致梯度消失,从而影响模型的训练效果。因此,我们在初始化时,可以使用其他初始化方法或者将模型初始化为一个很小的值,如0.01,0.1等。

相关文章:

一文彻底讲透 PyTorch

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。 针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。 汇总合集…...

JVM常用概念之锁粗化和循环

1.什么是锁粗化 锁粗化一般指有效地合并几个相邻的锁定块,从而减少锁定开销。如下述代码所示: 锁粗化前代码: synchronized (obj) {// statements 1 } synchronized (obj) {// statements 2 }锁粗化后代码: synchronized (obj)…...

HTML (总结黑马的)

<br>换行 <hr>水平线 div 独占一行 span 不换行 header 网页头部 nav 网页导航 footer 网页底部 aside 网页侧边栏 section 网页区块 article 网页文章 空格 < 小于号 > 大于号 图片&#xff1a; <img src"./cat.jpg" alt&q…...

YOLOv8 segment介绍

1.YOLOv8图像分割支持的数据格式&#xff1a; (1).用于训练YOLOv8分割模型的数据集标签格式如下: 1).每幅图像对应一个文本文件&#xff1a;数据集中的每幅图像都有一个与图像文件同名的对应文本文件&#xff0c;扩展名为".txt"; 2).文本文件中每个目标(object)占一行…...

PMBOK® 第六版 项目整合管理概念

目录 读后感—PMBOK第六版 目录 项目往往会牵涉到众多专业的知识以及来自不同专业、具有不同性格且可能处在不同地理位置的人员&#xff0c;存在着诸多不同分工的状况。要是没有统一的目标&#xff0c;相互之间也没有有效的沟通机制&#xff0c;并且不存在计划、监控以及平衡等…...

【Qt】【模型视图架构】代理模型

文章目录 代理模型简单介绍QSortFilterProxyModel类简单介绍排序过滤子类化 代理模型简单介绍 代理模型的作用是可以将一个模型中的数据进行排序或者过滤&#xff0c;然后提供给视图进行显示。 如下所示&#xff0c;创建一个源模型、一个代理模型&#xff0c;界面上创建一个列…...

Flutter 中的 IconTheme 小部件:全面指南

Flutter 中的 IconTheme 小部件&#xff1a;全面指南 Flutter 是一个功能丰富的 UI 开发框架&#xff0c;它允许开发者使用 Dart 语言来构建跨平台的移动、Web 和桌面应用。在 Flutter 的丰富组件库中&#xff0c;IconTheme 是一个用于设置应用中图标主题的小部件&#xff0c;…...

virtualbox虚拟机、centos7安装增强工具

文章目录 1. virtualBox语言设置2. 设置终端启动快捷键3. 添加virtualbox 增强工具4. 设置共享文件夹 1. virtualBox语言设置 virtualbox -> file -> perferences -> language ->选择对应的语言 -> OK virtualbox -> 管理 -> 全局设定 -> 语言 -> …...

Kotlin 泛型

文章目录 定义泛型属性泛型函数泛型类或接口 where 声明多个约束泛型具体化in、out 限制泛型输入输出 定义 有时候我们会有这样的需求&#xff1a;一个类可以操作某一类型的对象&#xff0c;并且限定只有该类型的参数才能执行相关的操作。 如果我们直接指定该类型Int&#xff…...

Tomcat 面试题(一)

1. 简述什么是Tomcat &#xff1f; Tomcat是一个开源的Java Servlet容器&#xff0c;它实现了Java Servlet和JavaServer Pages (JSP)技术&#xff0c;提供了一个运行Java Web应用程序的平台。Tomcat由Apache软件基金会维护&#xff0c;并广泛用于开发和部署Web应用程序。 Tom…...

跟踪一个Pytorch Module在训练过程中的内存分配情况

跟踪一个Pytorch Module在训练过程中的内存分配情况 代码输出 目的:跟踪一个Pytorch Module在训练过程中的内存分配情况 方法: 1.通过pre_hook module的来区分module的边界 2.通过__torch_dispatch__拦截所有的aten算子,计算在该算子中新创建tensor的总内存占用量 3.通过tensor…...

LeetCode 2965.找出缺失和重复的数字:小数据?我选择暴力(附优化方法清单:O(1)空间方法×3)

【LetMeFly】2965.找出缺失和重复的数字&#xff1a;小数据&#xff1f;我选择暴力&#xff08;附优化方法清单&#xff1a;O(1)空间方法3&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/find-missing-and-repeated-values/ 给你一个下标从 0 开始的二维…...

【运维】VMware Workstation 虚拟机内无网络的解决办法(或许可行)

【使用桥接模式】 【重置网络】 这个过程涉及管理Linux系统中的网络驱动程序和网络管理工具。以下是每个步骤的详细解释&#xff1a; 卸载网络驱动模块&#xff1a; sudo rmmod e1000 sudo rmmod e1000e sudo rmmod igb这些命令使用 rmmod&#xff08;remove module&#xff…...

如何使用Dora SDK完成Fragment流式切换和非流式切换

我想大家对Fragment都不陌生&#xff0c;它作为界面碎片被使用在Activity中&#xff0c;如果只是更换Activity中的一小部分界面&#xff0c;是没有必要再重新打开一个新的Activity的。有时&#xff0c;即使要更换完整的UI布局&#xff0c;也可以使用Fragment来切换界面。 何…...

低代码开发平台(Low-code Development Platform)的模块组成部分

低代码开发平台&#xff08;Low-code Development Platform&#xff09;的模块组成部分主要包括以下几个方面&#xff1a; 低代码开发平台的模块组成部分可以按照包含系统、模块、菜单组织操作行为等维度进行详细阐述。以下是从这些方面对平台模块组成部分的说明&#xff1a; …...

Java网络编程(上)

White graces&#xff1a;个人主页 &#x1f649;专栏推荐:Java入门知识&#x1f649; &#x1f649; 内容推荐:Java文件IO&#x1f649; &#x1f439;今日诗词:来如春梦几多时&#xff1f;去似朝云无觅处&#x1f439; ⛳️点赞 ☀️收藏⭐️关注&#x1f4ac;卑微小博主&a…...

Spring Kafka 之 @KafkaListener 注解详解

我们在开发的过程中当使用到kafka监听消费的时候会使用到KafkaListener注解&#xff0c;下面我们就介绍下它的常见属性和使用。 一、介绍 KafkaListener 是 Spring Kafka 提供的一个注解&#xff0c;用于声明一个方法作为 Kafka 消息的监听器 二、主要参数 1、topic 描述&…...

【量算分析工具-贴地距离】GeoServer改造Springboot番外系列九

【量算分析工具-概述】GeoServer改造Springboot番外系列三-CSDN博客 【量算分析工具-水平距离】GeoServer改造Springboot番外系列四-CSDN博客 【量算分析工具-水平面积】GeoServer改造Springboot番外系列五-CSDN博客 【量算分析工具-方位角】GeoServer改造Springboot番外系列…...

【linux】(1)文件操作及vi

文件和目录的创建 创建文件 touch 命令&#xff1a;创建一个新的空文件。 touch filename.txtecho 命令&#xff1a;创建一个文件并写入内容。 echo "Hello, World!" > filename.txtcat 命令&#xff1a;将内容写入文件。 cat > filename.txt然后输入内容&…...

【5】MySQL数据库备份-XtraBackup - 全量备份

MySQL数据库备份-XtraBackup-全量备份 前言环境版本 安装部署下载RPM 包二进制包 安装卸载 场景分析全量备份 | 恢复备份恢复综合 增量备份 | 恢复部分备份 | 恢复 前言 关于数据库备份的一些常见术语、工具等&#xff0c;可见《MySQL数据库-备份》章节&#xff0c;当前不再重…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...

6.9-QT模拟计算器

源码: 头文件: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);…...

字符串哈希+KMP

P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...