当前位置: 首页 > news >正文

多输入多输出非线性对象的模型预测控制—Matlab实现

本示例展示了如何在 Simulink 中设计多输入多输出对象的闭环模型预测控制。该对象有三个操纵变量和两个测量输出。

一、非线性对象的线性化

运行该示例需要同时安装 Simulink 和 Simulink Control Design。

% 检查是否同时安装了 Simulink 和 Simulink Control Design
if ~mpcchecktoolboxinstalled('simulink')disp('运行此示例需要 Simulink(R)')return
end
if ~mpcchecktoolboxinstalled('slcontrol')disp('运行此示例需要Simulink Control Design(R)')return
end

1、打开非线性 Simulink 模型

open('mpc_nonlinmodel')

在这里插入图片描述
2、使用 Simulink 控制设计工具箱中的线性命令,在默认操作条件下(传递函数块的初始状态均为零)对对象进行线性化:

plant = linearize('mpc_nonlinmodel');

l i n e a r i z e \color{red}{linearize} linearize 函数的作用是对Simulink模型或子系统进行线性近似,以状态空间模型的形式返回。

3、输入输出变量名称分配

plant.InputName = {'Mass Flow';'Heat Flow';'Pressure'};
plant.OutputName = {'Temperature';'Level'};
plant.InputUnit = {'kg/s' 'J/s' 'Pa'};
plant.OutputUnit = {'K' 'm'};

注意:由于没有定义任何可测量或不可测量的干扰,也没有定义任何不可测量的输出,因此在根据该模型创建 MPC 控制器时,默认情况下所有的模型输入都被假定为可操作变量,所有的模型输出都被假定为可测量输出。

二、设计模型预测控制器

1、创建控制器对象,其采样周期、预测和控制范围分别为 0.2 秒、5 步和 2 次移动;

mpcobj = mpc(plant,0.2,5,2);

2、设置操作变量的约束

mpcobj.MV = struct('Min',{-3;-2;-2},'Max',{3;2;2},'RateMin',{-1000;-1000;-1000});

3、设置操作变量和输出信号的权重

mpcobj.Weights = struct('MV',[0 0 0],'MVRate',[.1 .1 .1],'OV',[1 1]);

4、查看 mpcobj 属性

mpcobj==> 
MPC object (created on 30-May-2024 15:35:11):
---------------------------------------------
Sampling time:      0.2 (seconds)
Prediction Horizon: 5
Control Horizon:    2Plant Model:        --------------3  manipulated variable(s)   -->|  5 states  ||            |-->  2 measured output(s)0  measured disturbance(s)   -->|  3 inputs  ||            |-->  0 unmeasured output(s)0  unmeasured disturbance(s) -->|  2 outputs |--------------
Disturbance and Noise Models:Output disturbance model: default (type "getoutdist(mpcobj)" for details)Measurement noise model: default (unity gain after scaling)Weights:ManipulatedVariables: [0 0 0]ManipulatedVariablesRate: [0.1000 0.1000 0.1000]OutputVariables: [1 1]ECR: 100000State Estimation:  Default Kalman Filter (type "getEstimator(mpcobj)" for details)Constraints:-3 <= Mass Flow (kg/s) <= 3, -1000 <= Mass Flow/rate (kg/s) <= Inf, Temperature (K) is unconstrained-2 <= Heat Flow (J/s) <= 2,  -1000 <= Heat Flow/rate (J/s) <= Inf,       Level (m) is unconstrained-2 <= Pressure (Pa) <= 2,    -1000 <= Pressure/rate (Pa) <= Inf                                  

三、使用 Simulink 进行闭环仿真

1、打开闭环仿真模型

mdl1 = 'mpc_nonlinear';
open_system(mdl1)

在这里插入图片描述
2、闭环仿真

sim(mdl1)-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

3、运行结果如下图所示:
Input:
在这里插入图片描述
Output:
在这里插入图片描述
尽管存在非线性,但几秒钟后,两个输出都能很好地跟踪其参考值,同时,正如预期的那样,被操纵的变量保持在预设的硬约束内。

四、修改MPC设计跟踪斜坡信号

为了既能跟踪斜坡,又能补偿非线性,可将两个输出端上的干扰模型定义为三重积分器(如果没有非线性,则使用双积分器即可)。

1、通过 tf 函数构造一个外部扰动模型outdistmodel:
2、通过 setoutdist 函数将上面构造的不可观测外部扰动传递函数 outdistmodel 添加到 MPC 的 model 中:

outdistmodel = tf({1 0; 0 1}, {[1 0 0 0], 1; 1, [1 0 0 0]});
setoutdist(mpcobj,'model',outdistmodel);

3、打开Simulink中的闭环仿真模型 mpc_nonlinear_setoutdist,它与上面的 mpc_nonlinear 闭环 Simulink 仿真模型相同,唯一不同的是参考信号,其参考信号的第一个由阶跃变为3秒以内以0.2斜率上升的斜坡信号。
在这里插入图片描述
4、闭环仿真12s

sim(mdl2, 12)

5、仿真结果如下图所示:
Input:
在这里插入图片描述
Output:
在这里插入图片描述

相关文章:

多输入多输出非线性对象的模型预测控制—Matlab实现

本示例展示了如何在 Simulink 中设计多输入多输出对象的闭环模型预测控制。该对象有三个操纵变量和两个测量输出。 一、非线性对象的线性化 运行该示例需要同时安装 Simulink 和 Simulink Control Design。 % 检查是否同时安装了 Simulink 和 Simulink Control Design if ~m…...

多项分布模拟及 Seaborn 可视化教程

多项分布 简介 多项分布是二项分布的推广&#xff0c;它描述了在 n 次独立试验中&#xff0c;k 种不同事件分别出现次数的离散概率分布。与二项分布只能有两种结果&#xff08;例如成功/失败&#xff09;不同&#xff0c;多项分布可以有 k 种&#xff08;k ≥ 2&#xff09;及…...

学计算机,我错了吗?

今天&#xff0c;我的一位朋友告诉我&#xff0c;终于找到一家小公司入职&#xff0c;年前 1 月辞职&#xff0c;本想休息一段时间&#xff0c;没成想&#xff0c;休息到 6 月份&#xff0c;现在程序员真的越来越难找工作了。 肯定有人在想&#xff0c;现在这种行情&#xff0…...

学习小心意——简单的循坏语句

for循坏 基本语法格式 for 变量 in 序列:代码块 示例代码如下 for i in range(10):print(i)#输出结果:0 1 2 3 4 5 6 7 8 9 简单案例代码如下 利用for语句遍历序列 # 遍历字符串打印每个字母 for letter in "python":print(letter)# 遍历列表并打印每个元素 a …...

C++ 类方法解析:内外定义、参数、访问控制与静态方法详解

C 类方法 类方法&#xff0c;也称为成员函数&#xff0c;是属于类的函数。它们用于操作或查询类数据&#xff0c;并封装在类定义中。类方法可以分为两种类型&#xff1a; 类内定义方法: 直接在类定义内部声明和定义方法。类外定义方法: 在类定义内部声明方法&#xff0c;并在…...

pytorch+YOLOv8-1

1.工具开发 2.idea配置pytorch环境 默认安装新版本torch pip install torch 3.pytorch验证 4. print(torch.cuda.is_available()) 输出结果为 False 说明我只能用cpu...

JavaScript 基础 - 对象

对象 对象是一种无序的数据集合&#xff0c;可以详细的描述描述某个事物。 注意数组是有序的数据集合。它由属性和方法两部分构成。 语法 声明一个对象类型的变量与之前声明一个数值或字符串类型的变量没有本质上的区别。 <script>let 对象名 {属性名&#xff1a;属性值…...

代码随想录第23天|回溯part3 组合与分割

39.组合总和 class Solution { public:vector<vector<int>> res;vector<int> path;void backTracking(vector<int>& candidates,int target,int sum,int n,int step){if(n > 150) return;if(sum > target) return;if(sum target){res.push_…...

nginx和proxy_protocol协议

目录 1. 引言2. HTTP server的配置3. Stream server的配置3.1 作为proxy_protocol的前端服务器3.2 作为proxy_protocol的后端服务器1. 引言 proxy_protocol 是haproxy开发的一种用于在代理服务器和后端服务器之间传递客户端连接信息的协议。使用 proxy_protocol 的主要优势是能…...

【pytorch】数据转换/增强后保存

数据转换 from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as npimport torch import torchvision.transforms as Tplt.rcParams["savefig.bbox"] = tight # orig_im...

超越Devin!姚班带队,他们创大模型编程新世界纪录

超越Devin&#xff01;SWEBench排行榜上迎来了新玩家—— StarShip CodeGen Agent&#xff0c;姚班带队初创公司OpenCSG出品&#xff0c;以23.67%的成绩获得全球第二名的成绩。 同时创造了非GPT-4o基模的最高纪录&#xff08;SOTA&#xff09;。 我们都知道&#xff0c;SWEBe…...

江苏大信环境科技有限公司:环保领域的开拓者与引领者

2009 年&#xff0c;江苏大信环境科技有限公司在宜兴环保科技工业园成立。自创立之始&#xff0c;该公司便笃定坚守“诚信为本、以质量求生存、以创新谋发展”这一经营理念&#xff0c;全力以赴为客户构建专业的工业有机废气治理整体解决方案&#xff0c;进而成为国家高新技术企…...

关于 Bean 容器的注入方式,99 % 的人都答不全!

引言&#xff1a;在使用 Spring 框架开发应用程序时&#xff0c;依赖注入是一个至关重要的概念。而对于 Bean 容器的注入方式&#xff0c;虽然我们可能都有一定的了解&#xff0c;但实际上很多人在被问及这个问题时可能并不能完整地回答。本文将深入探讨 Spring 中 Bean 容器的…...

Spring的@Async注解及其用途

Spring 的 Async 注解是 Spring Framework 4.2 版本引入的功能&#xff0c;它用于支持异步方法执行。当一个方法标注了 Async&#xff0c;Spring 会在一个单独的线程中调用该方法&#xff0c;从而不会阻塞主线程的执行。 Async 注解的用途&#xff1a; 提高性能&#xff1a;通…...

JS(DOM、事件)

DOM 概念:Document Object Model&#xff0c;文档对象模型。将标记语言的各个组成部分封装为对应的对象: Document:整个文档对象Element:元素对象Attribute:属性对象Text:文本对象Comment:注释对象 JavaScript通过DOM&#xff0c;就能够对HTML进行操作: 改变 HTML 元素的内…...

学习小心意——python的构造方法和析构方法

构造方法和析构方法分别用于初始化对象的属性和释放类占有的资源 构造方法_init_() 语法格式如下&#xff1a; class 类名:def __init__(self, 参数1, 参数2, ...):# 初始化代码self.属性1 参数1self.属性2 参数2# ... 示例代码如下 class Student:def __init__(self):s…...

GB/T 23995-2009 室内装饰装修用溶剂型醇酸木器涂料检测

溶剂型醇酸木器涂料是指以醇酸树脂为主要成膜物&#xff0c;通过氧化干燥成膜的溶剂型木器涂料适用于室内木制品表面的保护及装饰。 GB/T 23995-2009室内装饰装修用溶剂型醇酸木器涂料检测项目&#xff1a; 测试指标 测试方法 在容器中状态 GB/T 23995 细度 GB/T 6753.1 …...

Maven 中的 classifier 属性用过没?

最近训练营有小伙伴问到松哥一个关于 Maven 依赖的问题&#xff0c;涉及到 classifier 属性&#xff0c;随机问了几个小伙伴&#xff0c;都说工作中没用到过&#xff0c;因此简单整篇文章和小伙伴们分享下。 Maven 大家日常开发应该都有使用&#xff0c;Maven 中有一个比较好玩…...

Linux网络编程:传输层协议|UDP|TCP

知识引入&#xff1a; 端口号&#xff1a; 当应用层获得一个传输过来的报文时&#xff0c;这时数据包需要知道&#xff0c;自己应该送往哪一个应用层的服务&#xff0c;这时就引入了“端口号”&#xff0c;通过区分同一台主机不同应用程序的端口号&#xff0c;来保证数据传输…...

MongoDB CRUD操作:内嵌文档查询

MongoDB内嵌文档的查询 文章目录 MongoDB内嵌文档的查询使用点号.查询内嵌文档嵌套字段的相等匹配使用查询操作符进行匹配指定AND条件 嵌套文档的匹配使用 MongoDB Atlas 查询内嵌文档导航至集合指定查询过滤文档点击应用 可以使用下面几种方法查询MongoDB中的嵌入文档&#xf…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分&#xff1a; 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]

报错信息&#xff1a;libc.so.6: cannot open shared object file: No such file or directory&#xff1a; #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代&#xff0c;运营商作为信息通信网络的核心枢纽&#xff0c;承载着海量用户数据与关键业务传输&#xff0c;其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级&#xff0c;传统安全防护体系逐渐暴露出局限性&a…...