基于学习的决策树
基于学习的决策树概述
决策树是一种监督学习方法,广泛应用于分类和回归任务中。基于学习的决策树模型通过学习数据中的特征来构建树状结构,帮助做出决策。以下是对基于学习的决策树的详细介绍,包括其基本概念、工作流程、构建算法、优势和挑战,以及主要应用领域。
基本概念
1. 决策树结构
决策树由节点和边组成。树的根节点代表整个数据集,内部节点表示数据集上的特征,边表示特征的取值,叶节点表示分类结果或回归值。每个内部节点对应一个决策规则,根据特征的不同取值,将数据集划分为子集。
2. 分类树与回归树
- 分类树(Classification Tree):用于分类任务,叶节点表示类别标签。
- 回归树(Regression Tree):用于回归任务,叶节点表示连续值。
工作流程
- 数据准备:收集和预处理数据,包括处理缺失值、归一化特征等。
- 特征选择:选择用于分割数据集的特征,根据某些标准(如信息增益、基尼指数)选择最优特征。
- 节点分裂:根据选择的特征分裂数据集,递归地创建子节点,直到满足停止条件(如树的最大深度、叶节点的最小样本数)。
- 树剪枝:对过拟合的树进行剪枝,移除不必要的节点,以提高泛化能力。
- 预测与评估:使用构建好的决策树进行预测,并评估模型性能。
构建算法
1. ID3(Iterative Dichotomiser 3)
- 信息增益:选择具有最高信息增益的特征进行分裂。信息增益衡量特征对分类的不确定性减少程度。
- 步骤:
- 计算所有特征的信息增益。
- 选择信息增益最大的特征进行分裂。
- 对分裂后的子集递归执行上述步骤。
2. C4.5
- 信息增益率:改进了ID3算法,使用信息增益率来选择特征,以避免偏向多值特征。
- 步骤:
- 计算所有特征的信息增益率。
- 选择信息增益率最大的特征进行分裂。
- 对分裂后的子集递归执行上述步骤。
3. CART(Classification and Regression Trees)
- 基尼指数或方差:用于分类树时,选择基尼指数最小的特征;用于回归树时,选择方差最小的特征。
- 步骤:
- 计算所有特征的基尼指数(分类)或方差(回归)。
- 选择基尼指数或方差最小的特征进行分裂。
- 对分裂后的子集递归执行上述步骤。
优势
- 易于理解和解释:决策树的结构直观,易于可视化,便于解释和分析。
- 非线性特征关系:能够捕捉数据中非线性特征之间的关系。
- 处理缺失值:可以处理数据集中缺失值,不需要进行大量预处理。
- 较少的数据预处理:不需要特征缩放或归一化。
挑战
- 过拟合:决策树容易对训练数据过拟合,影响泛化能力。剪枝技术和设置适当的停止条件可以缓解过拟合问题。
- 稳定性差:对数据中的噪声和小的扰动敏感,不稳定。
- 计算复杂度:在处理高维数据时,构建决策树的计算复杂度较高,可能导致效率低下。
- 偏差问题:单棵决策树可能表现出高方差或高偏差,需要通过集成方法(如随机森林)来改善。
主要应用领域
- 分类任务:如垃圾邮件检测、图像分类、疾病诊断等。
- 回归任务:如房价预测、股票价格预测、销量预测等。
- 特征选择:在构建复杂模型前,使用决策树进行特征选择。
- 数据探索和分析:帮助理解数据中的特征关系和模式。
总结
基于学习的决策树是一种强大且易于理解的监督学习方法,适用于分类和回归任务。通过特征选择、节点分裂和树剪枝等步骤,决策树能够从数据中学习到有效的决策规则。尽管存在过拟合、稳定性差和计算复杂度高等挑战,但通过剪枝技术、集成方法等手段,决策树在各种应用领域中展现出广泛的应用前景。
相关文章:
基于学习的决策树
基于学习的决策树概述 决策树是一种监督学习方法,广泛应用于分类和回归任务中。基于学习的决策树模型通过学习数据中的特征来构建树状结构,帮助做出决策。以下是对基于学习的决策树的详细介绍,包括其基本概念、工作流程、构建算法、优势和挑…...
godot.bk2
1.$node_name 其实 就是 get_node 的语法糖 2.场景内部用get_node,场景外部用信号 这是自定义信号的绑定,如果是内置信号,直接右键点击链接到一个函数即可 3.场景切换和摄像头一直居中 4.class_name命名一个类,extends继承&…...
STM32 IIC 使用 HAL 库操作eeprom
在STM32上通过I2C接口(注意:在标准STM32库中,I2C接口通常被写为"I2C"而不是"IIC")与EEPROM芯片通信时,你需要遵循I2C通信协议,并使用STM32的HAL库或标准外设库(如果适用&am…...
YOLOv8+PyQt5海洋船只检测(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测)
1.效果视频:海洋船只检测yoloV8检测(https://mbd.pub/o/bread/mbd-ZpaYk55r)_哔哩哔哩_bilibili资源包含可视化的海洋船只检测系统,可对于高空拍摄到的海洋图片进行轮船检测,基于最新的YOLOv8训练的海洋船只检测模型&a…...
PCL 高阶多项式曲线回归拟合(二维)
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 高阶多项式曲线回归(Polynomial Regression)是一种线性回归模型的扩展,它允许数据拟合一个非线性的曲线。虽然多项式本身是非线性的,但我们可以通过引入新的变量(例如,原始变量的平方、立方等)来将问题转化为…...
深入理解 Python3 函数:从基础语法到高级应用
Python3 函数是构建模块化代码的基本单位,允许我们将代码组织成独立的、可重用的块。本文将详细介绍 Python3 函数的基本语法、常用命令、示例、应用场景、注意事项,并进行总结。 基本语法 在 Python 中,函数的定义使用 def 关键字…...
03_初识Spring Cloud Gateway
文章目录 一、网关简介1.1 网关提出的背景1.2 网关在微服务中的位置1.3 网关的技术选型1.4 补充 二、Spring Cloud Gateway的简介2.1 核心概念:路由(Route)2.2 核心概念:断言(Predicate)2.3 核心概念&#…...
python数据分析——线性模型
参考资料:活用pandas库 1、简单线性回归 线性回归的目标是描述响应变量(或“因变量”)和预测变量(也称“特征”、“协变量”、“自变量”)之间的直线关系。本例中将讨论tips数据集中的total_bill对tip的影响。 # 导入…...
网络原理——HTTP/HTTPS ---- HTTPS
T04BF 👋专栏: 算法|JAVA|MySQL|C语言 🫵 今天你敲代码了吗 目录 HTTPS加密与解密HTTPS的工作流程使用对称密钥来加密使用非对称密钥 来对 对称密钥进行加密第三方公证总结 HTTPS https本质上就是在http的基础之上 增加了加密层,抛开加密层之后,剩下的部…...
网络协议二
一、套接字Socket 基于 TCP UDP 协议的 Socket 编程,在讲 TCP 和 UDP 协议的时候,我们分客户端和服务端,在写程序的时候,我们也同样这样分。 在网络层,Socket 函数需要指定到底是 IPv4 还是 IPv6,分别对应设…...
内存映射mmap技术详解
一、mmap基础概念 mmap 即 memory map,也就是内存映射。mmap 是一种内存映射文件的方法,即将一个文件或者其它对象映射到进程的地址空间,实现文件磁盘地址和进程虚拟地址空间中一段虚拟地址的一一对映关系。实现这样的映射关系后,…...
react 合成事件
React合成事件-CSDN博客 当然,很高兴为你解释React中的合成事件概念,非常适合React初学者理解。 想象一下,你正在组织一场派对,为了让派对顺利进行,你需要管理各种活动,比如游戏、音乐和食物分配。但是&a…...
springboot配置集成RedisTemplate和Redisson,使用分布式锁案例
文章要点 自定义配置属性类集成配置RedisTemplate集成配置分布式锁Redisson使用分布式锁简单实现超卖方案 1. 项目结构 2. 集成RedisTemplate和Redisson 添加依赖 依赖的版本与继承的spring-boot-starter-parent工程相对应,可写可不写 <!--spring data redis…...
随机数相关
产生随机数对象 固定写法: Random 随机数变量名 new Random();Random r new Random();生成随机数 int i r.Next(); //生成一个非负数的随机数 Console.WriteLine(i);i r.Next(100); // 生成一个 0~99的随机数 左边始终是0 左包含 右边是100 右不包含 Consol…...
EulerMaker Yocto Open Build Service
EulerMaker & Yocto & Open Build Service 1 介绍1.1 概述 2 工具2.1 Yocto 【嵌入式领域】介绍目标好处三大关键组件创建流程发行版本 2.2 Open Build Service 【OBS】【服务器领域】介绍应用 2.3 EulerMaker 【全场景】介绍特性需求背景(1)能支…...
SQL面试问题集
目录 Q.左连接和右连接的区别 Q.union 和 union all的区别 1、取结果的交集 2、获取结果后的操作 Q.熟悉开窗函数吗?讲一下row_number和dense_rank的区别。 Q.hive行转列怎么操作的 Q.要求手写的题主要考了聚合函数和窗口函数,row_number()&#…...
基于单片机的八路抢答器设计论文
绪 论1.1 课题研究的相关背景 抢答器是一种应用非常广泛的设备,在各种竞赛、抢答场合中,它能迅速、客观地分辨出最先获得发言权的选手。早期的抢答器只由几个三极管、可控硅、发光管等组成,能通过发光管的指示辩认出选手号码。现在大多数抢答器均使用单片机(如MCS-5…...
一个最简单基于spring的websocket服务端+客户端实现案例
1、服务端 代码分为两部分: 一个是服务器终端类:用java注解来监听连接ServerEndpoint、连接成功OnOpen、连接失败OnClose、收到消息等状态OnMessage import org.springframework.stereotype.Component;import javax.websocket.*; import javax.websoc…...
三.二、关于 Vue.js 中`transition`组件使用:页面切换动画和标签移动动画都是要用到的
一、引言 在 Vue.js 中,transition组件提供了一种简单而强大的方式来实现页面过渡效果。它可以让元素在状态改变时,如进入或离开视图时,以平滑的动画方式进行过渡。通过transition,我们可以为应用增添更加生动和吸引人的用户体验…...
指纹考勤系统
目录 1.课题研究目的和内容 1.1 课题研究目的 1.2 课题研究内容 2.系统总体方案设计及功能模块介绍 2.1总体方案设计 2.2 ATK-301模块介绍 2.3 TFTLCD显示功能模块介绍 2.4 蜂鸣器报警功能模块介绍 2.5 时钟模块介绍 3.系统硬件设计与实现 3.1 系统硬件电…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
写一个shell脚本,把局域网内,把能ping通的IP和不能ping通的IP分类,并保存到两个文本文件里
写一个shell脚本,把局域网内,把能ping通的IP和不能ping通的IP分类,并保存到两个文本文件里 脚本1 #!/bin/bash #定义变量 ip10.1.1 #循环去ping主机的IP for ((i1;i<10;i)) doping -c1 $ip.$i &>/dev/null[ $? -eq 0 ] &&am…...
