当前位置: 首页 > news >正文

【高阶数据结构(八)】跳表详解

💓博主CSDN主页:杭电码农-NEO💓

⏩专栏分类:高阶数据结构专栏⏪

🚚代码仓库:NEO的学习日记🚚

🌹关注我🫵带你学习更多数据结构
  🔝🔝


在这里插入图片描述

高阶数据结构

  • 1. 前言
  • 2. 跳表的概念
  • 3. 跳表的特性分析
  • 4. 跳表的效率分析
  • 5. 跳表模拟实现
  • 7. 跳表和传统查找结构的对比
  • 8. 总结

1. 前言

跳表也是一种查找结构,和红黑树,哈希的价值是一样的,那么跳表的优势是什么呢?

本章重点:

本篇文章会着重讲解跳表的基本概念和特性, 讲解实现跳表的逻辑,以及手撕一个跳表. 最后会将跳表和红黑树/哈希进行对比, 分析优势和缺点


2. 跳表的概念

跳表是基于有序链表的基础上发展而来的

在这里插入图片描述

有序链表的查找效率为O(N). 优化策略:

  1. 假如每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如图b。这样所有新增加的指针连成了一个新的链表,但它包含的节点个数只有原来的一半。由于新增加的指针,我们不再需要与链表中每个节点逐个进行比较了,需要比较的节点数大概只有原来的一半

在这里插入图片描述

  1. 以此类推,我们可以在第二层新产生的链表上,继续为每相邻的两个节点升高一层,增加一个指针,从而产生第三层链表。如下图c,这样搜索效率就进一步提高了。

在这里插入图片描述

  1. 跳表正是受这种多层链表的想法的启发而设计出来的。这样设计确实可以大大提高效率,但问题是,一旦此结构进行插入或删除, 整个跳表的规则就会被打乱. 插入/删除一个元素后, 后面节点的高度可能就不符合跳表的规则了.

跳表的发明者为了避免上诉情况,设计了这样的一种结构:

在这里插入图片描述

  1. skiplist的设计为了避免这种问题,做了一个大胆的处理,不再严格要求对应比例关系,而是插入一个节点的时候随机出一个层数。这样每次插入和删除都不需要考虑其他节点的层数,这样就好处理多了

3. 跳表的特性分析

拿下图举例:

在这里插入图片描述

查找19分析:

从头节点的最上面的节点开始, next=6,19大于6.直接向右跳到6. next=空,向下走,next=25.25大于19.再向下走. next=9.19大于9,向右走到9. next=17. 19大于17, 向右跳到17. next=25. 25大于19.向下走. next=19.找到19. 总结: 比它大, 向右走. 比它小, 向下走

插入/删除分析:

插入和删除操作的关键都是, 找到此位置的每一层节点的前一个和后一个节点. 插入和删除和其他节点无关, 只需要修改每一层的next指针指向即可. 比如现在要在节点7和9之间插入节点8. 节点8假设是三层. 那么插入只需要考虑节点8的第一层和第二层的前一个节点是6,而第三层的前一个节点是7. 第一层的后一个节点是25.第二层的后一个节点是9.第三次的后一个节点也是9. 依次改变指针知晓即可.


4. 跳表的效率分析

上面我们说到,skiplist插入一个节点时随机出一个层数,听起来怎么这么随意,如何保证搜索时
的效率呢?这里首先要细节分析的是这个随机层数是怎么来的。一般跳表会设计一个最大层数maxLevel的限制,其次会设置一个多增加一层的概率p。那么计算这个随机层数的伪代码如下图:

在这里插入图片描述

p代表概率,maxlevel代表最高层数

在这里插入图片描述

根据前面randomLevel()的伪码,我们很容易看出,产生越高的节点层数,概率越低。定量的分析如下:

  • 节点层数至少为1。而大于1的节点层数,满足一个概率分布。
  • 节点层数恰好等于1的概率为1-p
  • 节点层数大于等于2的概率为p,而节点层数恰好等于2的概率为p(1-p)
  • 节点层数大于等于3的概率为p^ 2,而节点层数恰好等于3的概率为p^2*(1-p)
  • 节点层数大于等于4的概率为p^ 3,而节点层数恰好等于4的概率为p^3*(1-p)

在这里插入图片描述

综上所述,跳表的平均时间复杂度为: O(logN)


5. 跳表模拟实现

首先是跳表的节点构造:

struct SkipListNode {int _val;vector<SkipListNode*> _nextv;SkipListNode(int val, int height) :_val(val), _nextv(height, nullptr){}
};

链表的多层结构可以抽象为vector, 而每一层的高度在初始化此节点时再使用随机算法来计算. 这里我们设置p为0.5,maxlevel为32. 写死它,当然后续你也可以做拓展

跳表的增删查改:

class Skiplist {typedef SkipListNode node;
public:Skiplist() {//头节点层数先给1层_head = new node(-1, 1);srand(time(0));}bool search(int target) {node* cur = _head;int level = _head->_nextv.size() - 1;while (level >= 0){//和cur->next[level]比较,比它小就向下走,比它大向右走if (cur->_nextv[level] && cur->_nextv[level]->_val < target)cur = cur->_nextv[level];//下一个节点是空,即是尾,也要向下走else if (!cur->_nextv[level] || cur->_nextv[level]->_val > target)level--;else return true;}return false;}vector<node*> FindPrevNode(int num){node* cur = _head;int level = _head->_nextv.size() - 1;vector<node*> prev(level + 1, _head);//用于保存每一层的前一个while (level >= 0){//一旦要向下走了,就可以更新了,向右走不需要动if (cur->_nextv[level] && cur->_nextv[level]->_val < num)cur = cur->_nextv[level];else if (cur->_nextv[level] == nullptr || cur->_nextv[level]->_val >= num){prev[level] = cur;--level;}}return prev;}void add(int num) {vector<node*> prev = FindPrevNode(num);int n = RandomLevel();node* newnode = new node(num, n);if (_head->_nextv.size() < n){_head->_nextv.resize(n, nullptr);prev.resize(n, _head);}//链接前后节点即可for (int i = 0; i < n; i++){//新节点的下一个是prev的下一个newnode->_nextv[i] = prev[i]->_nextv[i];prev[i]->_nextv[i] = newnode;}}bool erase(int num) {//要删除你,先找到此节点的每层的前一个,和插入时相似vector<node*> prev = FindPrevNode(num);//代表这个值不存在, 最下层找不到它,它就一定不存在if (prev[0]->_nextv[0] == nullptr || prev[0]->_nextv[0]->_val != num)return false;node* del = prev[0]->_nextv[0];for (int i = 0; i < del->_nextv.size(); i++)prev[i]->_nextv[i] = del->_nextv[i];delete del;return true;}int RandomLevel(){int level = 1;while (rand() < RAND_MAX * _p && level < _max)level++;return level;}void Print(){int level = _head->_nextv.size();for (int i = level - 1; i >= 0; --i){node* cur = _head;while (cur){printf("%d->", cur->_val);cur = cur->_nextv[i];}printf("\n");}}
private:node* _head;size_t _max = 32;double _p = 0.5;
};

代码的解释都在注释中,不懂欢迎私信


7. 跳表和传统查找结构的对比

  1. skiplist相比平衡搜索树(AVL树和红黑树)对比,都可以做到遍历数据有序,时间复杂度也差不多。skiplist的优势是:a、skiplist实现简单,容易控制。平衡树增删查改遍历都更复杂。 b、skiplist的额外空间消耗更低。平衡树节点存储每个值有三叉链,平衡因子/颜色等消耗。skiplist中p=1/2时,每个节点所包含的平均指针数目为2;skiplist中p=1/4时,每个节点所包含的平均指针数目为1.33;

  2. skiplist相比哈希表而言,就没有那么大的优势了。相比而言a、哈希表平均时间复杂度是O(1),比skiplist快。b、哈希表空间消耗略多一点。skiplist优势如下:a、遍历数据有序 b、skiplist空间消耗略小一点,哈希表存在链接指针和表空间消耗。c、哈希表扩容有性能损耗。d、哈希表再极端场景下哈希冲突高,效率下降厉害,需要红黑树补足接力。


8. 总结

本篇文章是高阶数据结构的最后一篇文章. 高阶数据结构的学习之路就到此为止.

相关文章:

【高阶数据结构(八)】跳表详解

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:高阶数据结构专栏⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学习更多数据结构   &#x1f51d;&#x1f51d; 高阶数据结构 1. 前言2. 跳表的概…...

用旧安卓手机当 linux 开发机

1. 下载 Termux (快速链接&#xff0c;如果失效或者要下载最新版请去github release 下载 ) 注意手机硬件&#xff0c;我这个是 64 的所以下 64 的 https://github.com/termux/termux-app/releases/download/v0.118.0/termux-app_v0.118.0github-debug_arm64-v8a.apk 2. 弄到…...

discuz如何添加主导航

大家好&#xff0c;今天教大家怎么样给discuz添加主导航。方法其实很简单&#xff0c;大家跟着我操作既可。一个网站的导航栏是非常重要的&#xff0c;一般用户进入网站的第一印象就是看网站的导航栏。如果大家想看效果的话可以搜索下网创有方&#xff0c;或者直接点击查看效果…...

[每日一练]患某种疾病的患者,正则表达式的匹配

该题目来源于力扣&#xff1a; 1527. 患某种疾病的患者 - 力扣&#xff08;LeetCode&#xff09; 题目要求&#xff1a; 患者信息表&#xff1a; Patients ----------------------- | Column Name | Type | ----------------------- | patient_id | int | | pati…...

PHP身份证识别接口、线上平台如何实现身份证实名认证功能?

线上平台实现身份证实名认证的功能&#xff0c;需要结合身份证识别接口来完成。首先&#xff0c;用户通过上传身份证图片或者拍照的方式实现证件信息的提取&#xff0c;身份证实名认证接口通过对提取到的证件信息进行核验&#xff0c;以此来实现线上用户身份的实名认证&#xf…...

若依:mybatis查询的结果未映射到实体类报null

开启驼峰命名转换&#xff1a; mapUnderscoreToCamelCase: true 我的是mtybatis配置开启驼峰命名转换不生效&#xff0c;还需要在MyBatisConfig中配置 // 配置mybatis自动转驼峰 生效 sessionFactory.getObject().getConfiguration().setMapUnderscoreToCamelCase(true)&#x…...

成都百洲文化传媒有限公司电商服务可信吗?

在当今数字化浪潮席卷之下&#xff0c;电商行业蓬勃发展&#xff0c;成为推动经济增长的重要引擎。在这一领域&#xff0c;成都百洲文化传媒有限公司凭借其专业的电商服务&#xff0c;迅速崛起&#xff0c;成为行业的佼佼者。该公司不仅深谙电商市场的运营之道&#xff0c;更以…...

【递归、搜索与回溯】递归、搜索与回溯准备+递归主题

递归、搜索与回溯准备递归主题 1.递归2.搜索3.回溯与剪枝4.汉诺塔问题5.合并两个有序链表6.反转链表7.两两交换链表中的节点8.Pow(x, n)-快速幂&#xff08;medium&#xff09; 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你…...

MVC前端怎么写:深入解析与实战指南

MVC前端怎么写&#xff1a;深入解析与实战指南 在Web开发领域&#xff0c;MVC&#xff08;Model-View-Controller&#xff09;是一种广泛使用的架构模式&#xff0c;它将应用程序的数据、界面和控制逻辑分离&#xff0c;使得代码更加清晰、易于维护。本文将详细探讨MVC前端如何…...

LINUX网络设置

一、1.1.ifconfig&#xff1a;当前设备正在启动的网卡&#xff08;启动的&#xff09; ifconfig -a &#xff1a;当前所有设备的网卡&#xff08;启动的和没有启动的都包括&#xff09; 1.2.ifconfig展示的ens33各行含意&#xff1a; 1.2.1 ens33: flags 4163<UP, …...

双指针解题

验证回文数&#xff08;验证回文数-CSDN博客&#xff09;和判断在子序列&#xff08;判断子序列-CSDN博客&#xff09;已经在之前进行了计算&#xff0c;今天有三个新的双指针问题&#xff1a; 两数之和II—输入有序数组 给你一个下标从 1 开始的整数数组 numbers &#xff0…...

【Text2SQL 论文】DIN-SQL:分解任务 + 自我纠正 + in-context 让 LLM 完成 Text2SQL

论文&#xff1a;DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with Self-Correction ⭐⭐⭐⭐ NeurIPS 2023, arXiv:2304.11015 Code: Few-shot-NL2SQL-with-prompting | GitHub 文章目录 一、论文速读1.1 Schema Linking Module1.2 Classification & Decompo…...

基于Springboot+vue实现的汽车服务管理系统

作者主页&#xff1a;Java码库 主营内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】&#xff1a;Java 【框架】&#xff1a;spring…...

ROS2从入门到精通4-3:全局路径规划插件开发案例(以A*算法为例)

目录 0 专栏介绍1 路径规划插件的意义2 全局规划插件编写模板2.1 构造规划插件类2.2 注册并导出插件2.3 编译与使用插件 3 全局规划插件开发案例(A*算法)常见问题 0 专栏介绍 本专栏旨在通过对ROS2的系统学习&#xff0c;掌握ROS2底层基本分布式原理&#xff0c;并具有机器人建…...

Java学习【认识异常】

Java学习【认识异常】 认识异常异常的种类异常的作用 异常的处理方式JVM默认的处理方式捕获异常finally 多个异常的处理异常中的方法抛出异常 自定义异常 认识异常 在Java中&#xff0c;将程序执行过程中发生的不正常行为称为异常 异常的种类 Error代表的是系统级别的错误&a…...

uniapp+h5 ——微信小程序页面截屏保存在手机

web-view 需要用到 web-view &#xff0c;类似于iframe&#xff0c; 将网页嵌套到微信小程序中&#xff0c;参数传递等&#xff1b; 示例&#xff08;无法实时传递数据&#xff09;&#xff0c;页面销毁时才能拿到h5传递的数据&#xff0c;只能利用这点点击跳转到小程序另一个…...

三、基于图像分类预训练编码及图神经网络的预测模型 【框图+源码】

背景&#xff1a; 抽时间补充&#xff0c;先挖个坑。 一、模型结构 二、源码...

Linux - 高级IO

目录 理解五种IO模型非阻塞IO的设置多路转接之select 实现一个简易的select服务器select服务器的优缺点 多路转接之poll 实现一个简易的poll服务器poll服务器的优缺点 多路转接之epoll epoll原理epoll的优势用epoll实现一个简易的echo服务器 epoll的LT和ET工作模式 什么是LT和…...

面试题:说一下 http 报文都有哪些东西?

面试题&#xff1a;说一下 http 报文都有哪些东西&#xff1f; HTTP 是传输超文本&#xff08;实际上除了 HTML&#xff0c;可以传输任何类型的文件&#xff0c;如视频、音频、文本等&#xff09;的协议&#xff0c;是一组用于浏览器-服务器之间数据传输的规则。 HTTP 位于 OS…...

开山之作!Python数据与算法分析手册,登顶GitHub!

若把编写代码比作行军打仗&#xff0c;那么要想称霸沙场&#xff0c;不能仅靠手中的利刃&#xff0c;还需深谙兵法。 Python是一把利刃&#xff0c;数据结构与算法则是兵法。只有熟读兵法&#xff0c;才能使利刃所向披靡。只有洞彻数据结构与算法&#xff0c;才能真正精通Pyth…...

编译安装gcc-11及可能遇到的bug

编译安装脚本 GCC_VERSION11.1.0 PACKAGE_DIR/path/to/gcc/source/code GCC_DIR$PACKAGE_DIR/gcc-$GCC_VERSION GCC_INSTALL_DIR/path/to/install/gccmkdir -p $GCC_INSTALL_DIR cd $GCC_INSTALL_DIR rm -rf * cd $PACKAGE_DIR rm -rf gcc-$GCC_VERSION if [ ! -f "gcc-$…...

vue项目引入json/js文件批量或单个方法

vue项目 json // 方式一 &#xff1a; 将文件内容完整的引入 import json from ./src/assets/xxx.json console.log(json) console.log(---)// 方式二 &#xff1a; 部分引入-名称必须是文件中定义的key import {name1,name2} from ./src/assets/xxx.json console.log(name1)…...

守护任务用来防止资源冲突

背景&#xff1a;有三个任务&#xff0c;他们都需要操作数码管。每个任务对应三个数码管&#xff0c;共9个数码管。硬件上9个数码管的控制使用一套硬件完成。 策略&#xff1a;每个任务都往自己的队列里面发数据&#xff0c;单独建立一个监听任务&#xff1a;处理所有队列的数…...

fast admin实现多数据库导入数据

思路 1创建多数据库连接 2后端的前台代码能使用get或者post请求传递选中数据给后台 3后台能够接收到 4后台接收到id或者全字段数据后对数据进行处理&#xff0c;然后使用多数据库操作将其存入第二个数据库 实现 1config文件下创建新数据库连接 db_config2 > [// 数据库类…...

NLP基础——序列模型(动手学深度学习)

序列模型 定义 序列模型是自然语言处理&#xff08;NLP&#xff09;和机器学习领域中一类重要的模型&#xff0c;它们特别适合处理具有时间顺序或序列结构的数据&#xff0c;例如文本、语音信号或时间序列数据。 举个例子&#xff1a;一部电影的评分在不同时间段的评分可能是…...

机器学习AI大模型的开源与闭源:哪个更好?

文章目录 前言一、开源AI模型1.1 开源的优点1.2 开源的缺点 二、闭源AI模型2.1 闭源的优点2.2 闭源的缺点 三、开源与闭源的平衡3.1 开源与闭源结合的案例3.2 开源与闭源的战略选择 小结 前言 在过去的几年里&#xff0c;人工智能&#xff08;AI&#xff09;和机器学习&#xf…...

关于大模型多轮问答的两种方式

前言 大模型的多轮问答难点就是在于如何精确识别用户最新的提问的真实意图&#xff0c;而在常见的使用大模型进行多轮对话方式中&#xff0c;我接触到的只有两种方式&#xff1a; 一种是简单地直接使用 user 和 assistant 两个角色将一问一答的会话内容喂给大模型&#xff0c…...

达梦数据库相关SQL及适配Mysql配置总结

&#x1f353; 简介&#xff1a;java系列技术分享(&#x1f449;持续更新中…&#x1f525;) &#x1f353; 初衷:一起学习、一起进步、坚持不懈 &#x1f353; 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正&#x1f64f; &#x1f353; 希望这篇文章对你有所帮助,欢…...

Centos7.9实现多台机器ssh免密登录

1.本机&#xff08;172.16.10.228&#xff09;先生成密钥对 ssh-keygen -t rsa 2.执行命令&#xff0c;把本机公钥拷贝到远程机器 ssh-copy-id rootdistinctIp 3.查看一下远程机器 、/root/.ssh/authorized_keys文件 cat /root/.ssh/authorized_keys 会看到里边多了个公钥…...

Unity3D DOTS JobSystem物理引擎的使用详解

前言 Unity3D DOTS&#xff08;Data-Oriented Technology Stack&#xff09;是Unity引擎的一项新技术&#xff0c;旨在提高游戏性能和扩展性。其中的Job System是一种用于并行处理任务的系统&#xff0c;可以有效地利用多核处理器的性能。在本文中&#xff0c;我们将重点介绍如…...