当前位置: 首页 > news >正文

详解 Spark SQL 代码开发之数据读取和保存

一、通用操作

/**
基本语法:1.读取:SparkSession.read[.format("format")[.option("...")]].load("path")2.保存:DataFrame.write[.format("format")[.option("...")]][.mode("SaveMode")].save("path")说明:1.默认读取和保存的文件格式为 parquet2."format"包含:"csv"、"jdbc"、"json"、"orc"、"parquet" 和 "textFile"3.option("…") 是在 "jdbc" 格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable4."SaveMode" 指定保存模式,SaveMode 是一个枚举类,其中的常量包括:4.1 "error":默认值,如果文件已经存在则抛出异常4.2 "append":如果文件已经存在则追加4.3 "overwrite":如果文件已经存在则覆盖4.4 "ignore":如果文件已经存在则忽略
*/
object TestSparkSqlRead {def main(args: Array[String]): Unit = {// 创建 sparksql 环境对象val conf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")val spark = SparkSession.builder().config(conf).getOrCreate()// 引入环境对象中的隐式转换import spark.implicits._// val df = spark.read.load("data/user.json") // errorval df = spark.read.format("json").load("data/user.json")df.show()// 直接查询文件:文件格式.`文件路径`spark.sql("select * from json.`data/user.json`").show()// df.write.save("output") // 默认保存为 parquet 格式df.write.format("json").save("output")// df.write.format("json").mode("overwrite").save("output") // 覆盖保存// 关闭环境spark.close()}}

二、parquet

/**SparkSQL默认的读取保存数据源为 Parquet 格式Parquet 是一种能够有效存储嵌套数据的列式存储格式基本语法:1.读取:1.1 SparkSession.read.load("path") 1.2 SparkSession.read.parquet("path")2.保存:2.1 DataFrame.write[.mode("SaveMode")].save("path") 2.2 DataFrame.write[.mode("SaveMode")].parquet("path")
*/
object TestSparkSqlRead {def main(args: Array[String]): Unit = {// 创建 sparksql 环境对象val conf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")val spark = SparkSession.builder().config(conf).getOrCreate()// 引入环境对象中的隐式转换import spark.implicits._val df = spark.read.load("data/user.parquet")val df1 = spark.read.parquet("data/user.parquet")df.show()df.write.save("output") df1.write.parquet("output1") // 关闭环境spark.close()}}

三、json

/**基本语法:1.读取:SparkSession.read.json("path") 2.保存:DataFrame.write[.mode("SaveMode")].json("path") 注意:Spark 读取的 JSON 文件不是传统的 JSON 文件,每一行都应该是一个 JSON 串
*/
object TestSparkSqlRead {def main(args: Array[String]): Unit = {// 创建 sparksql 环境对象val conf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")val spark = SparkSession.builder().config(conf).getOrCreate()// 引入环境对象中的隐式转换import spark.implicits._val df = spark.read.json("data/user.json")df.show()df.write.json("output") // 关闭环境spark.close()}}

四、csv

/**基本语法:1.读取:1.1 SparkSession.read.format("csv")[.option(...)].load("path") 1.2 SparkSession.read.csv("path") 2.保存:2.1 DataFrame.write.format("csv")[.mode("SaveMode")].save("path") 2.2 DataFrame.write[.mode("SaveMode")].csv("path") 说明:csv 是默认以逗号为分隔符的文件格式
*/
object TestSparkSqlRead {def main(args: Array[String]): Unit = {// 创建 sparksql 环境对象val conf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")val spark = SparkSession.builder().config(conf).getOrCreate()// 引入环境对象中的隐式转换import spark.implicits._val df = spark.read.format("csv") // 指定读取文件格式.option("sep", ";") // 指定分隔符.option("inferSchema", "true") .option("header", "true") // 指定第一行是否为表头.load("data/user.csv")df.show()df.write.format("csv").save("output") // 关闭环境spark.close()}}

五、mysql

  • 导入 mysql 依赖

    <dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.27</version>
    </dependency>
    
  • 读取和保存数据

    /**
    基本语法:1.读取:1.1 SparkSession.read.format("jdbc").option("url", "..")…….load() 1.2 SparkSession.read.jdbc("url", "table", prop: Properties)2.保存:2.1 DataFrame.write.format("jdbc").option("url", "..")……[.mode("SaveMode")].save()2.2 DataFrame.write[.mode("SaveMode")].jdbc("url", "table", prop: Properties)*/
    object TestSparkSqlRead {def main(args: Array[String]): Unit = {// 创建 sparksql 环境对象val conf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")val spark = SparkSession.builder().config(conf).getOrCreate()// 引入环境对象中的隐式转换import spark.implicits._// 1. 读取// 1.1 方式一:val df = spark.read.format("jdbc") // 指定读取文件格式.option("url", "jdbc:mysql://linux:3306/spark") // 连接url.option("driver", "com.mysql.jdbc.Driver") // 驱动.option("user", "root") // 用户名.option("password", "123123") // 密码.option("dbtable", "user") // 表名.load()// 1.2 方式二:val df1 = spark.read.format("jdbc").options(Map("url" -> "jdbc:mysql://linux:3306/spark?user=root&password=123123","dbtable" -> "user","driver" -> "com.mysql.jdbc.Driver")).load()// 1.3 方式三:val props: Properties = new Properties()props.setProperty("user", "root")props.setProperty("password", "123123")val df2 = spark.read.jdbc("jdbc:mysql://linux:3306/spark", "user", props)df.show()// 2. 保存// 2.1 方式一df.write.format("jdbc") // 指定读取文件格式.option("url", "jdbc:mysql://linux:3306/spark") // 连接url.option("driver", "com.mysql.jdbc.Driver") // 驱动.option("user", "root") // 用户名.option("password", "123123") // 密码.option("dbtable", "user1") // 表名.mode(SaveMode.Append).save() // 2.2 方式二df2.write.mode("append").jdbc("jdbc:mysql://linux:3306/spark", "user2", props)// 关闭环境spark.close()}}
    

六、hive

1. 内置 hive

Spark 在安装编译后内部已经可以支持 Hive 表访问、 UDF (用户自定义函数) 以及 Hive 查询语言(HiveQL/HQL) 等

// 内置 Hive 的元数据存储在 derby 中,默认仓库地址为 $SPARK_HOME/spark-warehouse
// 进入 spark-shell// 1. 创建 hive 表
spark.sql("create table user(username string, age bigint)")// 2. 加载数据到表中
spark.sql("load data local inpath 'data/user.txt' into table user")// 3. 展示所有表
spark.sql("show tables").show// 4. 查询表数据
spark.sql("select * from user").show

2. 外部 hive

  • 配置连接外部 Hive

    • 将外部 Hive 的安装目录下的 hive-site.xml 配置文件拷贝到 Spark 安装目录的 conf 目录下

    • 将 Mysql 连接的驱动 jar 包拷贝到 Spark 安装目录的 jars 目录下(外部 Hive 的元数据库使用 MySQL)

    • 如果访问不到 hdfs,则需要把 core-site.xmlhdfs-site.xml 两个配置文件拷贝到 Spark 安装目录的 conf 目录下

    • 启动 spark-shell,执行 spark.sql("show tables").show 检查是否可以连接外部 Hive

  • 程序代码操作外部 Hive

    • 引入依赖

      <dependency><groupId>org.apache.spark</groupId><artifactId>spark-hive_2.12</artifactId><version>3.0.0</version>
      </dependency>
      <dependency><groupId>org.apache.hive</groupId><artifactId>hive-exec</artifactId><version>1.2.1</version>
      </dependency>
      <dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.27</version>
      </dependency>
      
    • hive-site.xml 文件拷贝到项目的 resources 目录中,同时确保 target/classes 目录下也有该文件

    • 编码

      object TestSparkSqlRead {def main(args: Array[String]): Unit = {// 若出现用户无权限的错误,可在首行添加// System.setProperty("HADOOP_USER_NAME", "root")// 创建 sparksql 环境对象,并开启 Hive 支持val conf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")// 配置修改数据库仓库的地址// conf.set("spark.sql.warehouse.dir", "hdfs://linux:8020/user/hive/warehouse")val spark = SparkSession.builder().enableHiveSupport() // 启用 hive 支持.config(conf).getOrCreate()// 使用 sparksql 操作 hivespark.sql("show tables").show()// 关闭环境spark.close()}}
      
  • 其他连接方式

    • spark-sql cli

      #进入 spark-sql CLI
      bin/spark-sql#编写HQL
      show tables;
      
    • spark beeline

      #启动 Thrift Server
      sbin/start-thriftserver.sh#使用 beeline 连接 Thrift Server
      bin/beeline -u jdbc:hive2://linux:10000 -n root#编写HQL
      show tables;
      

相关文章:

详解 Spark SQL 代码开发之数据读取和保存

一、通用操作 /** 基本语法&#xff1a;1.读取&#xff1a;SparkSession.read[.format("format")[.option("...")]].load("path")2.保存&#xff1a;DataFrame.write[.format("format")[.option("...")]][.mode("Save…...

Pulsar 社区周报 | No.2024-05-30 | BIGO 百页小册《Apache Pulsar 调优指南》

“ 各位热爱 Pulsar 的小伙伴们&#xff0c;Pulsar 社区周报更新啦&#xff01;这里将记录 Pulsar 社区每周的重要更新&#xff0c;每周发布。 ” BIGO 百页小册《Apache Pulsar 调优指南》 Hi&#xff0c;Apache Pulsar 社区的小伙伴们&#xff0c;社区 2024 上半年度的有奖问…...

第二证券股票杠杆:4分钟直线涨停!这一赛道,AH股集体爆发!

今日早盘&#xff0c;A股继续小幅震动收拾&#xff0c;首要股指涨跌互现&#xff0c;两市个股跌多涨少&#xff0c;成交有萎缩的趋势。 盘面上&#xff0c;医药、中字头、旅游、房地产等板块相对活跃&#xff0c;混合实践、玻璃基板、AI手机PC、光刻机等板块跌幅居前。 “中字…...

JavaScript 进阶征途:解锁Function奥秘,深掘Object方法精髓

个人主页&#xff1a;学习前端的小z 个人专栏&#xff1a;JavaScript 精粹 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结&#xff0c;欢迎大家在评论区交流讨论&#xff01; 文章目录 &#x1f235;Function方法 与 函数式编程&#x1f49d;1 call &#x1f49d…...

斜拉桥智慧施工数字孪生

基于图扑自主研发的 HT for Web 产品&#xff0c;利用现场照片及 CAD 图纸&#xff0c;结合 PBR 材质&#xff0c;搭建了具有赛博朋克风格的智慧斜拉桥可视化解决方案&#xff0c;精准复现斜拉桥建造规划过程&#xff0c;辅助运维人员对桥梁基建过程的网格化管理。提高桥梁的建…...

【chatGPT API】Function Calling:将自然语言转换为API调用或数据库查询

文章目录 一. 介绍二. 常见用例与Function Calling调用逻辑三. 调用细节1. 调用行为&#xff1a;tool_choice2. 调用规定&#xff1a;functions 四. 实战&#xff1a;查询公司相关产品 一. 介绍 OpenAI可以根据用户的要求输出一个符合用户要求的入参值。然后用户拿到入参值之后…...

Oracle Hint /*+APPEND*/插入性能总结

oracle append用法 Oracle中的APPEND用法主要用于提高数据插入的效率。 基本用法&#xff1a;在使用了APPEND选项后&#xff0c;插入数据会直接加到表的最后面&#xff0c;而不会在表的空闲块中插入数据。这种做法不需要寻找freelist中的free block&#xff0c;从而避免了在…...

正邦科技(day3)

出厂测试 设备校准 这个需要注意的是校准电流、电压、电感的时候有时候负感器会装反&#xff0c;mcu会坏&#xff0c;需要flash一下清空内存...

mac电脑多协议远程管理软件:Termius 8.4.0激活版下载

Termius 是一款功能强大的跨平台远程访问工具&#xff0c;可用于管理和连接各种远程系统和服务器。它支持SSH、Telnet、SFTP和Serial协议&#xff0c;并提供了键盘快捷键、自动完成和多标签功能&#xff0c;使用户可以方便地控制和操作远程主机。 Termius 提供了端到端的加密保…...

网络攻击的常见形式

开篇 本篇文章来自于《网络安全 ——技术与实践》的学习整理笔记。 正篇 口令窃取 相比于利用系统缺陷破坏网络系统&#xff0c;最容易的方法还是通过窃取用户的口令进入系统。因为人们倾向于选择很糟糕的口令作为登录密码&#xff0c;所以口令猜测很容易成功。通常&#xff0…...

ReactDOM 18版本 使用createRoot 替换render详解

概述 React 18 提供了两个 root API&#xff0c;被称之为 Legacy Root API 和 New Root API&#xff1a; Legacy Root API&#xff1a;是指之前版本的 root API ReactDOM.render&#xff0c;它将创建一个以 “legacy” 模式运行的 root&#xff0c;其工作方式与 React 17 完全…...

【赠书活动】好书推荐—《详解51种企业应用架构模式》

导读&#xff1a; 企业应用包括哪些&#xff1f;它们又分别有哪些架构模式&#xff1f;世界著名软件开发大师Martin Fowler给你答案。 01 什么是企业应用 我的职业生涯专注于企业应用&#xff0c;因此&#xff0c;这里所谈及的模式也都是关于企业应用的。&#xff08;企业应用…...

SpringBoot启动时使用外置yml文件

第一步&#xff1a;打包时排除yml文件 <build><resources><resource><!-- 排除的文件的路径 --><directory>src/main/resources</directory><excludes><!-- 排除的文件的名称 --><exclude>application-dev.yml</e…...

【开源三方库】Fuse.js:强大、轻巧、零依赖的模糊搜索库

1.简介 Fuse.js是一款功能强大且轻量级的JavaScript模糊搜索库&#xff0c;支持OpenAtom OpenHarmony&#xff08;以下简称“OpenHarmony”&#xff09;操作系统&#xff0c;它具备模糊搜索和排序等功能。该库高性能、易于使用、高度可配置&#xff0c;支持多种数据类型和多语…...

vue从入门到精通(六):数据代理

一&#xff0c;什么是数据代理 通过一个对象代理对另一个对象中属性的操作 二&#xff0c;object.defineproperty方法 object.defineproperty方法可以对对象追加属性 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>object…...

【C++修行之道】类和对象(二)类的6个默认成员函数、构造函数、析构函数

目录 一、类的6个默认成员函数 二、构造函数 2.1 概念 2.2 特性 2.2.5 自动生成默认构造函数 不进行显示定义的隐患&#xff1a; 2.2.6 自动生成的构造函数意义何在&#xff1f; 两个栈实现一个队列 2.2.7 无参的构造函数和全缺省的构造函数都称为默认构造函数&#x…...

【LeetCode热题100总结】239. 滑动窗口最大值

题目描述 给你一个整数数组 nums&#xff0c;有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例 1&#xff1a; 输入&#xff1a;nums [1,3,-1,-3,5,3,6,7]…...

【YOLOv9改进[Conv]】使用YOLOv10的空间通道解耦下采样SCDown模块替换部分CONv的实践 + 含全部代码和详细修改内容

本文将使用YOLOv10的空间通道解耦下采样SCDown模块替换部分CONv的实践 ,文中含全部代码和详细修改内容。 目录 一 YOLOv10 1 空间通道解耦下采样 2 可视化...

简单小游戏制作

控制台基础设置 //隐藏光标 Console.CursorVisible false; //通过两个变量来存储舞台的大小 int w 50; int h 30; //设置舞台&#xff08;控制台&#xff09;的大小 Console.SetWindowSize(w, h); Console.SetBufferSize(w, h);多个场景 int nowSceneID 1; while (true) …...

Delphi

Delphi&#xff0c;是美国 Borland&#xff08;宝兰&#xff09;公司於 1995 年开发在 Windows 平台下的快速应用程式开发工具 (Rapid Application Development&#xff0c;简称 RAD)&#xff0c;它的前身是在 DOS 下的产品 Borland Turbo Pascal。&#xff08;非开源软件&…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...