当前位置: 首页 > news >正文

MT2084 检测敌人

思路:

1. 以装置为中心->以敌人为中心。

以敌人为中心,r为半径做圆,与x轴交于a,b点,则在[a,b]之间的装置都能覆盖此敌人。

每个敌人都有[a,b]区间,则此题转化为:有多少个装置能覆盖到这些[a,b]区间。(“覆盖”指的是装置所在的位置在[a,b]线段上)

2.使用贪心:首先将所有线段进行排序(按右端点由小到大),每次将装置放在第一个未覆盖线段的右端点上。

代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 1e3 + 10;
struct enemy
{double x, y, r, l;bool v;
} e[N];
bool cmp(enemy a, enemy b)
{return a.r < b.r;
}
int main()
{int n;double r;while (cin >> n >> r && !(n == 0 && r == 0)){bool flag = false;memset(e, 0, sizeof e);for (int i = 1; i <= n; i++){cin >> e[i].x >> e[i].y;if (r * r < e[i].y * e[i].y) // 不可覆盖{flag = true;}else{ // 求在x轴上的投影e[i].l = e[i].x - sqrt(r * r - e[i].y * e[i].y);e[i].r = sqrt(r * r - e[i].y * e[i].y) + e[i].x;e[i].v = false;}}if (flag){ // 以敌人为中心,r为半径的圆与x无交点:不可覆盖cout << -1 << endl;continue;}sort(e + 1, e + 1 + n, cmp);int ans = 0;for (int i = 1; i <= n; i++){ // 从小到大检测每一条线段if (e[i].v == false){ // 此敌人还未被检测for (int j = i; j <= n; j++){if (e[j].v == false && e[j].l <= e[i].r) // 未被检测的敌人线段与当前线段有交集{e[j].v = true;}}e[i].v = true;ans++;}}cout << ans << endl;}return 0;
}

相关文章:

MT2084 检测敌人

思路&#xff1a; 1. 以装置为中心->以敌人为中心。 以敌人为中心&#xff0c;r为半径做圆&#xff0c;与x轴交于a,b点&#xff0c;则在[a,b]之间的装置都能覆盖此敌人。 每个敌人都有[a,b]区间&#xff0c;则此题转化为&#xff1a;有多少个装置能覆盖到这些[a,b]区间。…...

支持向量机、随机森林、K最近邻和逻辑回归-九五小庞

支持向量机&#xff08;Support Vector Machine, SVM&#xff09;、随机森林&#xff08;Random Forest&#xff09;、K最近邻&#xff08;K-Nearest Neighbors, KNN&#xff09;和逻辑回归&#xff08;Logistic Regression&#xff09;是机器学习和统计学习中常用的分类算法。…...

MySQL—多表查询—多表关系介绍

一、引言 提到查询&#xff0c;我们想到之前学习的单表查询&#xff08;DQL语句&#xff09;。而这一章节部分的博客我们将要去学习和了解多表查询。 对于多表查询&#xff0c;主要从以下7个方面进行学习。 &#xff08;1&#xff09;第一部分&#xff1a;介绍 1、多表关系 2、…...

Vue基础篇--table的封装

1、 在components文件夹中新建一个ITable的vue文件 <template><div class"tl-rl"><template :table"table"><el-tablev-loading"table.loading":show-summary"table.hasShowSummary":summary-method"table…...

mysql中optimizer trace的作用

大家好。对于MySQL 5.6以及之前的版本来说&#xff0c;查询优化器就像是一个黑盒子一样&#xff0c;我们只能通过EXPLAIN语句查看到最后 优化器决定使用的执行计划&#xff0c;却无法知道它为什么做这个决策。于是在MySQL5.6以及之后的版本中&#xff0c;MySQL新增了一个optimi…...

实习面试题(答案自敲)、

1、为什么要重写equals方法&#xff0c;为什么重写了equals方法后&#xff0c;就必须重写hashcode方法&#xff0c;为什么要有hashcode方法&#xff0c;你能介绍一下hashcode方法吗&#xff1f; equals方法默认是比较内存地址&#xff1b;为了实现内容比较&#xff0c;我们需要…...

二叉树讲解

目录 前言 二叉树的遍历 层序遍历 队列的代码 queuepush和queuepushbujia的区别 判断二叉树是否是完全二叉树 前序 中序 后序 功能展示 创建二叉树 初始化 销毁 简易功能介绍 二叉树节点个数 二叉树叶子节点个数 二叉树第k层节点个数 二叉树查找值为x的节点 判…...

Unity DOTS技术(五)Archetype,Chunk,NativeArray

文章目录 一.Chunk和Archetype什么是Chunk?什么是ArchType 二.Archetype创建1.创建实体2.创建并添加组件3.批量创建 三.多线程数组NativeArray 本次介绍的内容如下: 一.Chunk和Archetype 什么是Chunk? Chunk是一个空间,ECS系统会将相同类型的实体放在Chunk中.当一个Chunk…...

算法学习笔记(7.1)-贪心算法(分数背包问题)

##问题描述 给定 &#x1d45b; 个物品&#xff0c;第 &#x1d456; 个物品的重量为 &#x1d464;&#x1d454;&#x1d461;[&#x1d456;−1]、价值为 &#x1d463;&#x1d44e;&#x1d459;[&#x1d456;−1] &#xff0c;和一个容量为 &#x1d450;&#x1d44e;&…...

气膜建筑的施工对周边环境影响大吗?—轻空间

随着城市化进程的加快&#xff0c;建筑行业的快速发展也带来了环境问题。噪音、灰尘和建筑废料等对周边居民生活和生态环境造成了不小的影响。因此&#xff0c;选择一种环保高效的施工方式变得尤为重要。气膜建筑作为一种新兴的建筑形式&#xff0c;其施工过程对周边环境的影响…...

【计算机网络】对应用层HTTP协议的重点知识的总结

˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好&#xff0c;我是xiaoxie.希望你看完之后,有不足之处请多多谅解&#xff0c;让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如…...

30分钟快速入门TCPDump

TCPDump是一款功能强大的网络分析工具&#xff0c;它可以帮助网络管理员捕获并分析流经网络接口的数据包。由于其在命令行环境中的高效性与灵活性&#xff0c;TCPDump成为了网络诊断与安全分析中不可或缺的工具。本文将详细介绍TCPDump的基本用法&#xff0c;并提供一些高级技巧…...

Python | 刷题日记

1.海伦公式求三角形的面积 area根号下&#xff08;p(p-a)(p-b&#xff09;(p-c)) p是周长的一半 2.随机生成一个整数 import random xrandom.randint(0,9)#随机生成0到9之间的一个数 yeval(input("please input:")) if xy:print("bingo") elif x<y:pri…...

“JS逆向 | Python爬虫 | 动态cookie如何破~”

案例目标 目标网址:aHR0cHMlM0EvL21hdGNoLnl1YW5yZW54dWUuY29tL21hdGNoLzI= 本题目标:提取全部 5 页发布日热度的值,计算所有值的加和,并提交答案 常规 JavaScript 逆向思路 JavaScript 逆向工程通常分为以下三步: 寻找入口:逆向工程的核心在于找出加密参数的生成方式。…...

十.数据链路层——MAC/ARP

IP和数据链路层之间的关系 引言 在IP一节中&#xff0c;我们说IP层路由(数据转发)的过程&#xff0c;就像我们跳一跳游戏一样&#xff0c;从一个节点&#xff0c;转发到另一个节点 它提供了一种将数据从A主机跨网络发到B主机的能力 什么叫做跨网络&#xff1f;&#xff1f;&a…...

Linux主机安全可视化运维(免费方案)

本文介绍如何使用免费的主机安全软件,在自有机房或企业网络实现对Linux系统进行可视化“主机安全”管理。 一、适用对象 本文适用于个人或企业内的Linux服务器运维场景,实现免费、高效、可视化的主机安全管理。提前发现主机存在的安全风险,全方位实时监控主机运行时入侵事…...

Vite + Vue 3 前端项目实战

一、项目创建 npm install -g create-vite #安装 Vite 项目的脚手架工具 # 或者使用yarn yarn global add create-vite#创建vite项目 create-vite my-vite-project二、常用Vue项目依赖安装 npm install unplugin-auto-import unplugin-vue-components[1] 安装按需自动导入组…...

python-字符替换

[题目描述] 给出一个字符串 s 和 q 次操作&#xff0c;每次操作将 s 中的某一个字符a全部替换成字符b&#xff0c;输出 q 次操作后的字符串输入 输入共 q2 行 第一行一个字符串 s 第二行一个正整数 q&#xff0c;表示操作次数 之后 q 行每行“a b”表示把 s 中所有的a替换成b输…...

团队项目开发使用git工作流(IDEA)【精细】

目录 开发项目总体使用git流程 图解流程 1.创建项目仓库[组长完成] 2. 创建项目&#xff0c;并进行绑定远程仓库【组长完成】 3.将项目与远程仓库&#xff08;gitee&#xff09;进行绑定 3.1 创建本地的git仓库 3.2 将项目添加到缓存区 3.3 将项目提交到本地仓库&#…...

爬虫案例实战

文章目录 一、窗口切换实战二、京东数据抓取 一、窗口切换实战 案例实战&#xff1a;使用selenium实现打开百度和腾讯两个窗口并切换 知识点&#xff1a;用到selenium中execute_script()执行js代码及switch_to.window()方法 全部代码如下&#xff1a; import time import war…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

拟合问题处理

在机器学习中&#xff0c;核心任务通常围绕模型训练和性能提升展开&#xff0c;但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正&#xff1a; 一、机器学习的核心任务框架 机…...

第22节 Node.js JXcore 打包

Node.js是一个开放源代码、跨平台的、用于服务器端和网络应用的运行环境。 JXcore是一个支持多线程的 Node.js 发行版本&#xff0c;基本不需要对你现有的代码做任何改动就可以直接线程安全地以多线程运行。 本文主要介绍JXcore的打包功能。 JXcore 安装 下载JXcore安装包&a…...

P10909 [蓝桥杯 2024 国 B] 立定跳远

# P10909 [蓝桥杯 2024 国 B] 立定跳远 ## 题目描述 在运动会上&#xff0c;小明从数轴的原点开始向正方向立定跳远。项目设置了 $n$ 个检查点 $a_1, a_2, \cdots , a_n$ 且 $a_i \ge a_{i−1} > 0$。小明必须先后跳跃到每个检查点上且只能跳跃到检查点上。同时&#xff0…...