DRIVEN|15分的CNN+LightGBM怎么做特征分类,适用于转录组
说在前面
今天分享一篇做深度学习模型的文章,这是一篇软硬结合的研究,排除转换实体产品,我们做生信基础研究的可以学习模仿这个算法,适用且不局限于临床资料,转录组数据,GWAS数据。
今天给大家分享的一篇文章:Towards automatic home-based sleep apnea estimation using deep learning
- 标题:使用深度学习实现家庭睡眠呼吸暂停的自动评估
- 期刊名称:npj Digital Medicine
- 影响因子:15.2
- JCR分区:Q1
- 中科院分区:医学1区 Top
- 小类:卫生保健与服务1区 医学:信息1区
摘要
呼吸暂停和呼吸不足是常见的睡眠障碍,其特征是气道阻塞。多导睡眠图 (PSG
) 是一种睡眠研究,通常用于计算呼吸暂停-呼吸不足指数 (AHI
),即一个人每小时睡眠中呼吸暂停或某些类型的呼吸不足的次数,并诊断睡眠障碍的严重程度。及早发现和治疗呼吸暂停可以显著降低发病率和死亡率。然而,长期 PSG 监测是不可行的,因为它对患者来说既昂贵又不舒服。为了解决这些问题,我们提出了一种名为 DRIVEN
的方法,通过可穿戴设备在家中估计 AHI,并检测整个晚上何时发生呼吸暂停、呼吸不足和清醒期。因此,该方法可以帮助医生诊断呼吸暂停的严重程度。患者可以佩戴单个传感器或多个传感器组合,这些传感器可以在家中轻松测量:腹部运动、胸部运动或脉搏血氧仪。例如,DRIVEN 仅使用两个传感器,就将 72.4% 的测试患者正确归类到四个 AHI 类别之一,其中 99.3% 的患者要么正确分类,要么被置于与真实类别相差一个类别的位置。这是模型性能和患者舒适度之间的合理权衡。我们使用来自三项大型睡眠研究的公开数据,总共有 14,370 条记录。DRIVEN 由深度卷积神经网络和用于分类的光梯度提升机组合而成。它可以用于在无人监督的长期家庭监测系统中自动估计 AHI,从而降低医疗系统成本并改善患者护理。
结果
表1 三个数据集
图 1:DRIVEN 的管道。
- a数据按通道分离并分割成 30 秒的窗口。
- b对于每个通道,经过不同训练的深度 CNN 从原始信号(输入)中提取特征(输出)。
- c提取的特征被连接起来并输入到经过训练的 LightGBM,该 LightGBM 将输入数据分为正常和 AHI 事件(呼吸暂停、呼吸不足 1 型和呼吸不足 2 型)。
图 2:DRIVEN 对 AHI 事件分类的表现。
- a接收者-操作员特性和 ( b ) 精确召回曲线。请注意胸部和腹部传感器的重叠曲线。
- c使用两个输入通道(腹部运动和 SpO 2 )时 DRIVEN 的阈值相关性能指标。测试数据集中显示了所有患者的性能结果。准确度、精确度、召回率和 F1 事件分类是单个事件分类的指标。F1-AHI 分类测量在整个睡眠研究中预测 AHI 严重程度类别(健康、轻度、中度、重度)的 F1 分数。
图 3:DRIVEN 对 AHI 估计的表现。
- a实际与预测 AHI 除以四个 AHI 严重程度组。
- b混淆矩阵。在考虑阈值 0.79 和两个信号(腹部运动和 SpO 2)组合的情况下,根据测试数据评估性能。
表 2 不同传感器组合的 F1 得分
图 4:使用两个传感器(腹部运动和 SpO 2 )自动标记随机患者的 AHI 事件。
蓝色区域表示真实事件(零表示无事件,一表示 AHI 事件)。DRIVEN 的输出用符号表示,对于每个 30 秒窗口,这些符号表示该窗口被归类为 AHI 事件的概率。窗口根据其分类着色,取决于它们是高于还是低于确定的阈值 0.79。黑色十字代表被归类为清醒的片段,绿色三角形代表被归类为非 AHI 事件的片段,红色星号是被归类为 AHI 事件的窗口。第二张图放大了 1 小时的片段。补充图10将分辨率进一步提高到 15 分钟间隔。补充图11包括按呼吸暂停和不同低通气类型划分的真实标签。
总结
- 主要是用了CNN深度卷积神经网络,捕捉信号特征,用LightGBM分类器进行检测和事件分类。
- 数据集的主要变量有腹部运动信号、胸部运动信号、血氧饱和度(SpO2)。深度学习模型预测指标就常见的:准确率(Accuracy)、敏感性(Sensitivity)、特异性(Specificity)、F1评分、受试者工作特性曲线下面积(AUC-ROC)。
- 这套流程同样适用于临床资料,或者我们的转录组数据,变量从传感数据换成了量表队列或基因表达数据而已
相关文章:

DRIVEN|15分的CNN+LightGBM怎么做特征分类,适用于转录组
说在前面 今天分享一篇做深度学习模型的文章,这是一篇软硬结合的研究,排除转换实体产品,我们做生信基础研究的可以学习模仿这个算法,适用且不局限于临床资料,转录组数据,GWAS数据。 今天给大家分享的一篇文…...

react 怎样配置ant design Pro 路由?
Ant Design Pro 是基于 umi 和 dva 的框架,umi 已经预置了路由功能,只需要在 config/router.config.js 中添加路由信息即可。 例如,假设你需要为 HelloWorld 组件创建一个路由,你可以将以下代码添加到 config/router.config.js 中…...
DBSCAN 算法【python,机器学习,算法】
DBSCAN 即 Density of Based Spatial Clustering of Applications with Noise,带噪声的基于空间密度聚类算法。 算法步骤: 初始化: 首先,为每个数据点分配一个初始聚类标签,这里设为0,表示该点尚未被分配…...

MySQL之查询性能优化(六)
查询性能优化 查询优化器 9.等值传播 如果两个列的值通过等式关联,那么MySQL能够把其中一个列的WHERE条件传递到另一列上。例如,我们看下面的查询: mysql> SELECT film.film_id FROM film-> INNER JOIN film_actor USING(film_id)-> WHERE f…...

生成树协议STP(Spanning Tree Protocol)
为了提高网络可靠性,交换网络中通常会使用冗余链路。然而,冗余链路会给交换网络带来环路风险,并导致广播风暴以及MAC地址表不稳定等问题,进而会影响到用户的通信质量。生成树协议STP(Spanning Tree Protocol࿰…...
03-3.1.1 栈的基本概念
👋 Hi, I’m Beast Cheng👀 I’m interested in photography, hiking, landscape…🌱 I’m currently learning python, javascript, kotlin…📫 How to reach me --> 458290771qq.com 喜欢《数据结构》部分笔记的小伙伴可以订…...
排序算法集合
1. 冒泡排序 排序的过程分为多趟,在每一趟中,从前向后遍历数组的无序部分,通过交换相邻两数位置的方式,将无序元素中最大的元素移动到无序部分的末尾(第一趟中,将最大的元素移动到数组倒数第一的位置&…...

pdf文件太大如何变小,苹果电脑压缩pdf文件大小工具软件
压缩PDF文件是我们在日常办公和学习中经常会遇到的需求。PDF文件由于其跨平台、保持格式不变的特点,被广泛应用于各种场合。然而,有时候我们收到的PDF文件可能过大,不便于传输和存储,这时候就需要对PDF文件进行压缩。下面…...

vite项目打包,内存溢出
解决方案: "build1": "node --max-old-space-size8096 ./node_modules/vite/bin/vite.js build", 人工智能学习网站 https://chat.xutongbao.top...

Matlab解决施密特正交规范化矩阵(代码开源)
#最近在学习matlab,刚好和线代论文重合了 于是心血来潮用matlab建了一个模型来解决施密特正交规范化矩阵。 我们知道这个正交化矩阵挺公式化的,一般公式化的内容我们都可以用计算机来进行操作,节约我们人工的时间。 我们首先把矩阵导入进去…...

自养号测评助力:如何打造沃尔玛爆款?
沃尔玛,作为全球零售业的领军者,其平台为卖家们提供了一个巨大的商业舞台。然而,在这个竞争激烈的舞台上,如何迅速且有效地提升销量,成为了卖家们必须面对的重大挑战。 在探讨沃尔玛平台销量提升的策略时,我…...
C语言编译与链接
C语言编译与链接 目录 C语言编译与链接 一、概述 二、编译过程 三、链接过程...

电子电器架构 --- 智能座舱技术分类
电子电器架构 — 智能座舱技术分类 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,…...
提供操作日志、审计日志解决方案思路
操作日志 现在大部分公司一般使用SpringCloud这条技术栈,操作日志通过网关Gateway提供的Globalfilter统一拦截请求解析请求是比较好的选选择。 优点:相对于传统的过滤器、拦截器同步阻塞方案,SpringCloud Gateway使用的Webflux中的reactor-…...

选择富唯智能的可重构装配系统,就是选择了一个可靠的合作伙伴
在数字化、智能化的浪潮中,制造业正迎来一场前所未有的变革。而在这场变革中,富唯智能凭借其卓越的技术实力和创新能力,成为引领行业发展的领军企业。选择富唯智能的可重构装配系统,就是选择了一个可靠的合作伙伴,共同…...

echarts tooltip太多显示问题解决方案
思路:设置5个一换行 tooltip: {trigger: axis,confine:true,//限制tooltip在图表范围内展示// extraCssText: max-height:60%;overflow-y:scroll,//最大高度以及超出处理extraCssText: max-height:60%;overflow-y:scroll;white-space: normal;word-break: break-al…...

【control_manager】无法加载,gazebo_ros2_control 0.4.8,机械臂乱飞
删除URDF和SDRF文件中的特殊注释#, !,: xacro文件解析为字符串时出现报错 一开始疯狂报错Waiting for /controller_manager node to exist 1717585645.4673686 [spawner-2] [INFO] [1717585645.467015300] [spawner_joint_state_broadcaster]: Waiting for /con…...
深入对比:Transformer与LSTM的详细解析
在深度学习和自然语言处理(NLP)领域,Transformer和长短时记忆网络(LSTM)是两个备受瞩目的模型。它们各自拥有独特的优势,并在不同的任务中发挥着重要作用。本文将对这两种模型进行详细对比,帮助…...
lsof 命令
lsof(list open files)是一个列出当前系统打开文件的工具。在linux环境下,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件。所以如传输控制协议 (TCP) 和用户数据报协议 (UDP) …...

F5G城市光网,助力“一网通城”筑基数字中国
《淮南子》中说,“临河而羡鱼,不如归家织网”。 这句话在后世比喻为做任何事情都需要提前做好准备,有了合适的工具,牢固的基础,各种难题也会迎刃而解。 如今,数字中国发展建设如火如荼,各项任务…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...

关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...

tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能
指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

归并排序:分治思想的高效排序
目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法,由约翰冯诺伊曼在1945年提出。其核心思想包括: 分割(Divide):将待排序数组递归地分成两个子…...

【版本控制】GitHub Desktop 入门教程与开源协作全流程解析
目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork(创建个人副本)步骤 2: Clone(克隆…...