Signac|成年小鼠大脑 单细胞ATAC分析(1)
引言
在本教程中,我们将探讨由10x Genomics公司提供的成年小鼠大脑细胞的单细胞ATAC-seq数据集。本教程中使用的所有相关文件均可在10x Genomics官方网站上获取。
本教程复现了之前在人类外周血单核细胞(PBMC)的Signac入门教程中执行的命令。我们通过在不同的系统上进行相同的分析,来展示其性能以及对不同组织类型的适用性,并提供了一个来自不同物种的示例。
实战
首先,我们需要导入Signac、Seurat等一些用于分析小鼠数据的软件包。
library(Signac)
library(Seurat)
library(EnsDb.Mmusculus.v79)
library(ggplot2)
library(patchwork)
预处理工作流程
counts <- Read10X_h5("../vignette_data/atac_v1_adult_brain_fresh_5k_filtered_peak_bc_matrix.h5")
metadata <- read.csv(
file = "../vignette_data/atac_v1_adult_brain_fresh_5k_singlecell.csv",
header = TRUE,
row.names = 1
)
brain_assay <- CreateChromatinAssay(
counts = counts,
sep = c(":", "-"),
genome = "mm10",
fragments = '../vignette_data/atac_v1_adult_brain_fresh_5k_fragments.tsv.gz',
min.cells = 1
)
brain <- CreateSeuratObject(
counts = brain_assay,
assay = 'peaks',
project = 'ATAC',
meta.data = metadata
)
我们还可以向小鼠基因组的大脑对象添加基因注释。这将允许下游函数直接从对象中提取基因注释信息。
# extract gene annotations from EnsDb
annotations <- GetGRangesFromEnsDb(ensdb = EnsDb.Mmusculus.v79)
# change to UCSC style since the data was mapped to hg19
seqlevels(annotations) <- paste0('chr', seqlevels(annotations))
genome(annotations) <- "mm10"
# add the gene information to the object
Annotation(brain) <- annotations
计算 QC 指标
接下来我们计算一些有用的细胞 QC 指标。
brain <- NucleosomeSignal(object = brain)
我们可以分析所有细胞的DNA片段长度的周期性变化,并根据细胞核小体信号的强弱进行分类。观察结果表明,那些在单核小体与无核小体比例上表现异常的细胞,呈现出与其他细胞不同的条带图谱。而其他细胞则显示出了一次成功的ATAC-seq实验所特有的典型模式。
brain$nucleosome_group <- ifelse(brain$nucleosome_signal > 4, 'NS > 4', 'NS < 4')
FragmentHistogram(object = brain, group.by = 'nucleosome_group', region = 'chr1-1-10000000')
在ATAC-seq实验中,Tn5转座酶在转录起始位点(TSS)处的整合事件的富集程度,是一个关键的质量控制指标,用于评价Tn5的定位效率。ENCODE联盟将TSS富集分数定义为TSS周围Tn5整合位点的计数与这些位点在相邻区域计数的比率。在Signac软件包中,我们可以使用TSSEnrichment()函数来为每个细胞计算这一富集分数。
brain <- TSSEnrichment(brain, fast = FALSE)
brain$high.tss <- ifelse(brain$TSS.enrichment > 2, 'High', 'Low')
TSSPlot(brain, group.by = 'high.tss') + NoLegend()
brain$pct_reads_in_peaks <- brain$peak_region_fragments / brain$passed_filters * 100
brain$blacklist_ratio <- brain$blacklist_region_fragments / brain$peak_region_fragments
VlnPlot(
object = brain,
features = c('pct_reads_in_peaks', 'peak_region_fragments',
'TSS.enrichment', 'blacklist_ratio', 'nucleosome_signal'),
pt.size = 0.1,
ncol = 5
)
我们删除了这些 QC 指标异常值的细胞。
brain <- subset(
x = brain,
subset = peak_region_fragments > 3000 &
peak_region_fragments < 100000 &
pct_reads_in_peaks > 40 &
blacklist_ratio < 0.025 &
nucleosome_signal < 4 &
TSS.enrichment > 2
)
brain
## An object of class Seurat
## 157203 features across 3512 samples within 1 assay
## Active assay: peaks (157203 features, 0 variable features)
## 2 layers present: counts, data
归一化和线性降维
brain <- RunTFIDF(brain)
brain <- FindTopFeatures(brain, min.cutoff = 'q0')
brain <- RunSVD(object = brain)
在分析中,LSI(线性判别分析)的第一个主成分往往反映的是测序的深度(即技术层面的变异),而非生物学上的变异。如果确实如此,那么在后续的分析中应该将这一成分排除掉。为了判断是否存在这种情况,我们可以通过调用DepthCor()函数来计算每个LSI主成分与测序深度之间的相关性。
DepthCor(brain)
在这里,我们看到第一个 LSI 组件与细胞的计数总数之间存在非常强的相关性,因此我们将在没有该组件的情况下执行下游步骤。
非线性降维和聚类
细胞数据已经被嵌入到一个低维度的空间里,我们可以采用单细胞RNA测序(scRNA-seq)数据常用的分析方法,执行基于图谱的聚类分析,并通过非线性降维技术来进行数据可视化。RunUMAP()、FindNeighbors()和FindClusters()这些功能均集成在Seurat软件包中。
brain <- RunUMAP(
object = brain,
reduction = 'lsi',
dims = 2:30
)
brain <- FindNeighbors(
object = brain,
reduction = 'lsi',
dims = 2:30
)
brain <- FindClusters(
object = brain,
algorithm = 3,
resolution = 1.2,
verbose = FALSE
)
DimPlot(object = brain, label = TRUE) + NoLegend()
本文由 mdnice 多平台发布
相关文章:
Signac|成年小鼠大脑 单细胞ATAC分析(1)
引言 在本教程中,我们将探讨由10x Genomics公司提供的成年小鼠大脑细胞的单细胞ATAC-seq数据集。本教程中使用的所有相关文件均可在10x Genomics官方网站上获取。 本教程复现了之前在人类外周血单核细胞(PBMC)的Signac入门教程中执行的命令。…...
【POSIX】运行时so库动态加载
运行时可以自己自定义so库的动态加载框架,主动去加载某些库,并调用其中的某些方法 首先写一些方法,并生成so库 // hello.cpp#include <iostream>/*使用 nm 命令查看 so 库的内容 */// 1. 使用extern // dlsym(handle, "hello&qu…...
爱普生SG2520CAA汽车电子中控专用晶振
随着汽车电子技术的飞速发展,汽车中控系统变得越来越智能化和复杂化。为了确保这些系统的高性能和高可靠性,选择符合AEC-Q200标准的高品质晶振至关重要。爱普生SG2520CAA晶振凭借其优异的特性,成为汽车电子中控系统的理想选择。 爱普生晶振SG…...
Vue——监听器简单使用与注意事项
文章目录 前言编写简单demo注意事项 前言 监听器,在官网中称为侦听器,个人还是喜欢称之为监听器。官方文档如下: vue 官网 侦听器 编写简单demo 侦听器在项目中通常用于监听某个属性变量值的变化,并根据该变化做出一些处理操作。…...
OpenCV的“画笔”功能
类似于画图软件的自由笔刷功能,当按住鼠标左键,在屏幕上画出连续的线条。 定义函数: import cv2 import numpy as np# 初始化参数 drawing False # 鼠标左键按下时为True ix, iy -1, -1 # 鼠标初始位置# 鼠标回调函数 def mouse_paint(…...
uniapp封装picker选择器组件,支持关键字查询
CommonPicker.vue组件 路径在 components\CommonPicker.vue <template><view><uni-easyinput v-model"searchQuery" :placeholder"placeholder" /><picker :range"filteredOptions" :range-key"text" v-model&…...
智慧城市的规划与实施:科技引领城市运行效率新飞跃
随着信息技术的飞速发展,智慧城市的构想正逐步成为现实。作为地理信息与遥感领域的研究者,我深知在这一转型过程中,技术的创新与应用是提升城市运行效率的关键。本文旨在探讨如何利用地理信息系统(GIS)、遥感技术、大数…...
Linux——内存管理代码分析
虚空间管理 页框和页的关系 页框 将内存空间分为一个个大小相等的分区(比如:每个分区4KB),每个分区就是一个页框,也叫页帧,即物理页面,是linux划分内存空间的结果。 每个页框都有一个页框号,即内存块号、物理块号。 页 将用户…...
手机自动化测试:4.通过appium inspector 获取相关app的信息,以某团为例,点击,搜索,获取数据等。
0.使用inspector时,一定要把不相关的如weditor啥的退出去,否则,净是事。 1.从0开始的数据获取 第一个位置,有时0.0.0.0,不可以的话,你就用这个。 第二个位置,抄上。 直接点击第三个启动。不要…...
个人项目———密码锁的实现
布局组件 布局效果 组件绑定 密码锁的实现代码 using TMPro; using UnityEngine; using UnityEngine.UI;public class PasswordPanel : MonoBehaviour {// public Button button;// 所有按键的父物体public Transform buttonPanel;// 输入字符串的文本框public TMP_Text input…...
关于Input【type=number】可以输入e问题及解决方案
一、为什么 因为在数学里e 代表无理数,e是自然对数的底数,同时它又是一个无限不循环小数,所以我们在输入 e 时,输入框会默认 e 是数字,从而没有对它进行限制。 二、解决方案 小提示:vue下监听事件需要加n…...
zabbix“专家坐诊”第241期问答
问题一 Q:华为交换机的100GE 1/0/1口的光模块收光值监测不到,有没有人碰到过这个问题呢?其他的端口都能监测到收光值,但是100GE 1/0/1口监测不到收光值。底层能查到,zabbix 6.0监控不到,以下是端口的报错信…...
了解Kubernetes-RKE2的PKI以及证书存放位置
一、什么是PKI? 简称:证书基础设施。 可以方便理解为当你的集群有Server,Client架构,那么为了安全加密之间的通信,则需要使用证书进行交互,那么利用PKI架构可以安全加密组件之间的通信。 二、Kubernetes的PKI架构什…...
利用大语言模型进行事实匹配
论文地址:Automated Claim Matching with Large Language Models: Empowering Fact-Checkers in the Fight Against Misinformation | Companion Proceedings of the ACM on Web Conference 2024 WWW 2024 Automated Claim Matching with Large Language Models: Empowering F…...
【Stable Diffusion】(基础篇一)—— Stable Diffusion的安装
本系列笔记主要参考B站nenly同学的视频教程,传送门:B站第一套系统的AI绘画课!零基础学会Stable Diffusion,这绝对是你看过的最容易上手的AI绘画教程 | SD WebUI 保姆级攻略_哔哩哔哩_bilibili **Stable Diffusion(简称…...
维纳运动的概念
维纳运动(Wiener Process),也称为标准布朗运动,是一种重要的随机过程,广泛应用于数学、物理学和金融学等领域。它是一个连续时间的随机过程,具有一些特殊的性质,使其成为描述随机动态系统的经典…...
毫秒级查询性能优化实践!Apache Doris 在极越汽车数字化运营和营销方向的解决方案
作者:韩同阳,极越汽车大数据架构师,Apache Doris Active Contributor 编辑整理:SelectDB 技术团队 导读:极越是高端智能汽车机器人品牌,基于领先的百度 AI 能力和吉利 SEA 浩瀚架构生态赋能,致…...
vllm 大模型量化微调推理使用: lora、gptq、awq
1)微调lora模型推理 docker run --gpus all -v /ai/Qwen1.5-7B-Chat:/qwen-7b -v /ai/lora:/lora -p 10860:10860 --...
WPS/Office(Word、Excel、PPT) 自动测评方法
在各高等、中等院校的计算机类课程中,计算机基本应用技能的上机操作考试,广受重视,大为盛行。其中,office(word、excel、ppt)上机考试最为普遍。于是,实现这类Office文档操作的自动阅卷评分,很有必要。本人最近项目上刚好遇到需要解决这种自动评分的问题,所以再次记录下解决的…...
ArrayList——简单洗牌算法
特殊语法介绍: List<List<E>> 该语法情况比较特殊,相当于一个“二维数组”存着一个个线性表的结构,如图: 该语法的灵活性强,可适用于多种类型和多种情况。接下来就使用该语法来实现一个简单的洗牌操作。…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
