当前位置: 首页 > news >正文

东方博宜1760 - 整理抽屉

题目描述

期末考试即将来临,小T由于同时肩负了学习、竞赛、班团活动等多方面的任务,一直没有时间好好整理他的课桌抽屉,为了更好地复习,小T首先要把课桌抽屉里的书分类整理好。
小T的抽屉里堆着 N 本书,每本书的封面上都印有学科名称,学科名称用一个字符串表示,如语文学科的书封面上都印有“chinese”。现在,你的任务是帮助小T找出哪个学科的书最多?

输入

第一行包含一个自然数 N(0<N≤1000)表示抽屉中书的总数。
接下来 N 行每行包含一本书的学科名称,学科名称是一个长度不超过 15 的由小写英文字母组成的字符串。

输出

仅有一行包含一个字符串,表示最多的那种书的学科名称。
数据保证答案一定是唯一的。

样例

输入

5
english
chinese
physics
chinese
chinese

输出

chinese

说明

【样例解释】
小T课桌抽屉里共有 5 本书,其中有 3 本是语文学科的,英语学科和物理学科各有 1 本,所以最多的是语文学科的书,应输出“chinese”。
【数据范围】
30% 的数据满足:1≤N≤10,学科名称为长度不超过 2 的仅包含英文小写字母的字符串;
100% 的数据满足:1≤N≤1000,学科名称为长度不超过 15 的仅包含英文小写字母的字符串;

代码1

#include <iostream>
#include <map>
using namespace std;int main() {int n;cin >> n;map<string, int> subjectCounts;for (int i = 0; i < n; i++) {string subject;cin >> subject;subjectCounts[subject]++;}string maxSubject;int maxCount = 0;for (const auto& count : subjectCounts) {if (count.second > maxCount) {maxSubject = count.first;maxCount = count.second;}}cout << maxSubject << endl;return 0;
}

该代码首先读入输入的n,并创建一个map对象subjectCounts来存储每个学科及其出现次数。接下来,使用一个循环读取每本书的学科名称,使用subjectCounts[subject]++来增加对应学科的出现次数。

然后,我们通过遍历subjectCounts找到出现次数最多的学科名称和对应的出现次数。我们使用两个变量maxSubjectmaxCount来记录出现次数最多的学科名称和出现次数。如果有多个学科出现次数最多,则我们仅保留字典码最大的学科名称。

最后,我们输出maxSubject,即出现次数最多的学科名称。

代码2

#include <iostream>
#include <unordered_map>
using namespace std;int main() {int n;cin >> n;unordered_map<string, int> subjectCounts;string maxSubject;int maxCount = 0;for (int i = 0; i < n; i++) {string subject;cin >> subject;subjectCounts[subject]++;if (subjectCounts[subject] > maxCount) {maxSubject = subject;maxCount = subjectCounts[subject];}}cout << maxSubject << endl;return 0;
}

该代码首先读入输入的n,并创建一个unordered_map对象subjectCounts来存储每个学科及其出现次数。我们还定义了两个变量maxSubjectmaxCount来记录出现次数最多的学科名称和出现次数。

接下来,使用一个循环读取每本书的学科名称,并在subjectCounts中增加对应学科的出现次数。同时,我们通过比较当前学科的出现次数与maxCount来更新出现次数最多的学科名称和出现次数。

最后,我们输出maxSubject,即出现次数最多的学科名称。

这种方法使用了unordered_map来存储学科及其出现次数,使用一个循环遍历每本书,并实时更新出现次数最多的学科。它更加直观和通俗,不需要使用map和手动比较字典码大小。

相关文章:

东方博宜1760 - 整理抽屉

题目描述 期末考试即将来临&#xff0c;小T由于同时肩负了学习、竞赛、班团活动等多方面的任务&#xff0c;一直没有时间好好整理他的课桌抽屉&#xff0c;为了更好地复习&#xff0c;小T首先要把课桌抽屉里的书分类整理好。 小T的抽屉里堆着 N 本书&#xff0c;每本书的封面上…...

react快速开始(四)-之Vite 还是 (Create React App) CRA? 用Vite创建项目

文章目录 react快速开始(四)-之Vite 还是 (Create React App) CRA? 用Vite创建项目背景Vite 和 (Create React App) CRAVite&#xff1f;Vite 是否支持 TypeScript&#xff1f; 用Vite创建react项目参考 react快速开始(四)-之Vite 还是 (Create React App) CRA? 用Vite创建项…...

使用python绘制核密度估计图

使用python绘制核密度估计图 核密度估计图介绍效果代码 核密度估计图介绍 核密度估计&#xff08;Kernel Density Estimation&#xff0c;KDE&#xff09;是一种用于估计数据概率密度函数的非参数方法。与直方图不同&#xff0c;KDE 可以生成平滑的密度曲线&#xff0c;更好地…...

5. MySQL 运算符和函数

文章目录 【 1. 算术运算符 】【 2. 逻辑运算符 】2.1 逻辑非 (NOT 或者 !)2.2 逻辑与运算符 (AND 或者 &&)2.3 逻辑或 (OR 或者 ||)2.4 异或运算 (XOR) 【 3. 比较运算符 】3.1 等于 3.2 安全等于运算符 <>3.3 不等于运算符 (<> 或者 !)3.4 小于等于运算符…...

Linux学习之vi文本编辑器的使用

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…...

【数据结构】链表与顺序表的比较

不同点&#xff1a; 顺序表和链表是两种常见的数据结构&#xff0c;他们的不同点在于存储方式和插入、删除操作、随机访问、cpu缓存利用率等方面。 一、存储方式不同: 顺序表&#xff1a; 顺序表的存储方式是顺序存储&#xff0c;在内存中申请一块连续的空间&#xff0c;通…...

dart 基本语法

//入口方法 main() 或 void main() //数据类型 原生数据类型 String int double bool null 注意&#xff1a;String 包函 ‘’ “” ‘’’ ‘’’ 三种形式复杂数据类型 list Set Map自定义数据类型 class inheritance动态数据类型 var 注&#xff1a;dart 是静态类型语言&a…...

【经验分享】嵌入式入坑经历(选段)

文章目录 你现在的工作中所用到的专业知识有哪些呢&#xff1f;为什么想转行了&#xff1f;后来为什么从事了嵌入式行业呢?你对嵌入式的兴趣是何时培养起来的?你是怎么平衡兴趣爱好和工作的关系的?平时做的事情对你现在的工作有哪些帮助?对于有志学习嵌入式开发的在校大学生…...

Docker面试整理-Docker与虚拟机的区别是什么?

Docker 容器和传统的虚拟机(VM)都是提供隔离的运行环境以部署和运行应用程序的技术,但它们在架构和性能上存在显著的不同。了解这些差异可以帮助你选择最适合特定需求的解决方案: 基础架构:虚拟机:每个虚拟机都包括完整的操作系统、应用程序、必需的库和二进制文件,运行在…...

Java:JDK8 GC中ParNew和CMS的问题说明

JDK8中常用如下的垃圾收集器&#xff0c;它们分别运用在年轻代和老年代&#xff1a; ParNew : 年轻代垃圾收集器&#xff0c;多线程&#xff0c;采用标记—复制算法。 CMS&#xff1a;老年代的收集器&#xff0c;全称&#xff08;Concurrent Mark and Sweep&#xff09;&#…...

学单片机前先学什么?

先学c语言和数字电路 这里默认你说的单片机是51单片机&#xff0c;通过你的问题&#xff0c;我猜你的单片机应该还没有入门&#xff0c;如果是入门的话&#xff0c;一般都是从51单片机开始的。刚好我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「单片机的资料从…...

数据可视化:Matplotlib 与 Seaborn

数据可视化是数据分析中至关重要的一部分&#xff0c;它能帮助我们直观地理解数据的分布、趋势和关系。Python 中&#xff0c;Matplotlib 和 Seaborn 是两个最常用的可视化库。本文将详细介绍如何使用 Matplotlib 和 Seaborn 进行数据可视化&#xff0c;包括基本图形、图形定制…...

【linux】自定义快捷命令/脚本

linux自定义快捷命令 场景自定义命令自定义脚本 场景 深度学习经常要切换到自己环境&#xff0c;conda activate mmagic&#xff0c;但是又不想每次重复打这么多字&#xff0c;想使用快捷命令直接切换。 自定义命令 使用别名&#xff08;alias&#xff09;或自定义脚本来创建…...

使用onnxruntime加载YOLOv8生成的onnx文件进行目标检测

在网上下载了60多幅包含西瓜和冬瓜的图像组成melon数据集&#xff0c;使用 LabelMe 工具进行标注&#xff0c;然后使用 labelme2yolov8 脚本将json文件转换成YOLOv8支持的.txt文件&#xff0c;并自动生成YOLOv8支持的目录结构&#xff0c;包括melon.yaml文件&#xff0c;其内容…...

QT 信号和槽 一对多关联示例,一个信号,多个槽函数响应,一个信号源如何绑定多个槽函数

在窗体里放置一个单行文本编辑控件&#xff08;QLineEdit&#xff09;、一个标签控件&#xff08;QLabel&#xff09;和一个文本浏览控件&#xff08;QTextBrowser&#xff09;&#xff0c;在单行文 本编辑控件里的文本被编辑时&#xff0c;标签控件和文本浏览控件都会同步显示…...

C++ AVL树 详细讲解

目录 一、AVL树的概念 二、AVL树的实现 1.AVL树节点的定义 2.AVL树的插入 3.AVL树的旋转 4.AVL树的验证 三、AVL树的性能 四、完结撒❀ 一、AVL树的概念 二叉搜索树虽可以缩短查找的效率&#xff0c;但 如果数据有序或接近有序二叉搜索树将退化为单支树&#xff0c;查 …...

Faster R-CNN:端到端的目标检测网络

本文回顾了由微软研究人员开发的 Faster R-CNN 模型。Faster R-CNN 是一种用于物体检测的深度卷积网络&#xff0c;在用户看来&#xff0c;它是一个单一的、端到端的统一网络。该网络可以准确快速地预测不同物体的位置。为了真正理解 Faster R-CNN&#xff0c;我们还必须快速概…...

如何给 MySQL 表和列授予权限?(官方版)

目录 授予表级别权限 授予列级别权限 如何给MySQL表和列授予权限是MySQL数据操作中非常重要的步骤&#xff0c;也是企业级使用MySQL数据库的起步点&#xff0c;以下分别参照官方教程整理的MySQL数据库的权限操作。 以下的语句可以直接使用MySQL的命令行进行操作&#xff08;如何…...

攻防世界testre做法(考点:base58)

在做这道题目之前&#xff0c;我们先来简单了解一下base64加密和base58加密&#xff0c;先来说一些预备知识&#xff0c;bit为1个位&#xff0c;即一个0或1&#xff0c;八个位组成一个字节&#xff0c;即八个二进制数。 base64编码原理&#xff1a;1&#xff0c;在使用base64加…...

计算机视觉与模式识别实验1-1 图像的直方图平衡

文章目录 &#x1f9e1;&#x1f9e1;实验流程&#x1f9e1;&#x1f9e1;1.读入图像‘rice.png’&#xff0c;在一个窗口中显示灰度级n64&#xff0c;128和256的图像直方图。2.调解图像灰度范围&#xff0c;观察变换后的图像及其直方图的变化。3.分别对图像‘pout.tif’和‘ti…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)

cd /home 进入home盘 安装虚拟环境&#xff1a; 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境&#xff1a; virtualenv myenv 3、激活虚拟环境&#xff08;激活环境可以在当前环境下安装包&#xff09; source myenv/bin/activate 此时&#xff0c;终端…...

LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》

&#x1f9e0; LangChain 中 TextSplitter 的使用详解&#xff1a;从基础到进阶&#xff08;附代码&#xff09; 一、前言 在处理大规模文本数据时&#xff0c;特别是在构建知识库或进行大模型训练与推理时&#xff0c;文本切分&#xff08;Text Splitting&#xff09; 是一个…...