fps游戏如何快速定位矩阵
fps游戏如何快速定位矩阵
矩阵特点:
1、第一行第一列值的范围在**-1 ---- 1**之间,如果开镜之后值会变大。
2、第一行第三列的值始终为 0。
3、第一行第四列 的值比较大 , >300或者**<-300**。
根据这三个特点,定位矩阵已经足够了。找到的矩阵可以有多个,根据透视的效果,使用最佳的矩阵。
结合CE:
第一步: first Scan

提高速度可以根据自己的需要设置一些快捷键。

第二步: 进入游戏,最好买一把狙击枪 ,改变我们的视角,或者开镜之后 ,按下快捷键 9
视角没有改变则按下0

反复这样筛选我们的数据,直到还剩几百的时候。
第三步:
首先选择绿色的数据

分析: 值在 -1 和 1之间

定位到矩阵:符合矩阵的特征。

相关文章:
fps游戏如何快速定位矩阵
fps游戏如何快速定位矩阵 矩阵特点: 1、第一行第一列值的范围在**-1 ---- 1**之间,如果开镜之后值会变大。 2、第一行第三列的值始终为 0。 3、第一行第四列 的值比较大 , >300或者**<-300**。 根据这三个特点,定位矩阵已经足够了…...
【机器学习基础】Python编程06:五个实用练习题的解析与总结
Python是一种广泛使用的高级编程语言,它在机器学习领域中的重要性主要体现在以下几个方面: 简洁易学:Python语法简洁清晰,易于学习,使得初学者能够快速上手机器学习项目。 丰富的库支持:Python拥有大量的机器学习库,如scikit-learn、TensorFlow、Keras和PyTorch等,这些…...
R可视化:生存分析森林图
在R语言中,使用forestplot包来绘制生存分析的森林图是一个专业且直观的方式来展示各种风险因素或治疗对生存结果的影响。森林图(Forest Plot)常用于展示多项研究的效应量和其可信区间,尤其在生存分析中,它可以清晰地显示不同变量或因素对生存时间的影响程度和统计显著性。…...
一个 python+tensorFlow训练1万张图片分类的简单直观例子( 回答由百度 AI 给出 )
问题:给定一个文件夹 train_images,里面有10000张30*30像素的灰度值图片,第1~第10000张图片的名称分别为 00001.png、 00002.png、... 09999.png、10000.png,train_images 下面还有一个 image_category_map.txt文件, 文件的内容…...
DBeaver无法连接Clickhouse,连接失败
DBeaver默认下载的是0.2.6版本的驱动,但是一直连接失败: 报错提示 解决办法 点击上图中的Open Driver Configuration点击库 - 重置为默认状态在弹出的窗口中修改驱动版本号为0.2.4或者其他版本(我没有试用过其他版本)࿰…...
python基础实例
下一个更大的数 定义一个Solution类,用于实现next_great方法 class Solution: def next_great(self, nums1, nums2): # 初始化一个空字典answer,用于存储答案 answer {} # 初始化一个空列表stack,用于存储待比较的数字 stack [] # 遍历nu…...
ADASIS V2 协议-1
ADAS V2协议-1 1 简介2 版本控制3 ADASIS v23.1 ADASIS v2 Horizon (地平线)3.2 ADASIS v2的构建3.3 ADASIS v2 Horizon Provider (ADAS V2地平线提供者)3.4 paths and offsets (路径和偏移量)3.5 Path Pro…...
人工智能安全风险分析及应对策略
文│中国移动通信集团有限公司信息安全管理与运行中心 张峰 江为强 邱勤 郭中元 王光涛 人工智能(AI)是引领新一轮科技革命和产业变革的关键技术。人工智能赋能网络安全的同时,也会带来前所未有的安全风险。本文在介绍人工智能技术赋能网络安…...
Python驱动下的AI革命:技术赋能与案例解析
在当今这个信息化、数据化的时代,人工智能(AI)已经成为推动社会发展的重要力量。而Python,作为一种简单易学、功能强大的编程语言,在AI领域的应用中发挥着至关重要的作用。本文将探讨Python在AI领域的应用、其背后的技…...
JavaScrip轮播图
前言 在网页设计中,轮播图(Carousel)已经成为一种常见的元素,用于展示一系列的图片或内容卡片。它们不仅能够吸引用户的注意力,还能节省空间,使得用户可以在有限的空间内获得更多的信息。今天,我…...
达梦8 网络中断对系统的影响
测试环境:三节点实时主从 版本:--03134283938-20221019-172201-20018 测试1 系统没有启动确认监视器 关闭节点3网卡 登录节点1检查主库状态 显示向节点2发送归档成功,但无法收到节点3的消息,节点1挂起 日志报错如下…...
OpenAI发布GPT-4思维破解新策略,Ilya亦有贡献!
OpenAI正在研究如何破解GPT-4的思维,并公开了超级对齐团队的工作,Ilya Sutskever也在作者名单中。 论文地址:https://cdn.openai.com/papers/sparse-autoencoders.pdf 代码:https://github.com/openai/sparse_autoencoder 特征可…...
[消息队列 Kafka] Kafka 架构组件及其特性(二)Producer原理
这边整理下Kafka三大主要组件Producer原理。 目录 一、Producer发送消息源码流程 二、ACK应答机制和ISR机制 1)ACK应答机制 2)ISR机制 三、消息的幂等性 四、Kafka生产者事务 一、Producer发送消息源码流程 Producer发送消息流程如上图。主要是用…...
faiss ivfpq索引构建
假设已有训练好的向量值,构建索引(nlist和随机样本按需选取) import numpy as np import faiss import pickle from tqdm import tqdm import time import os import random# 读取嵌入向量并保留对应关系 def read_embeddings(directory, ba…...
ffmpeg视频编码原理和实战-(2)视频帧的创建和编码packet压缩
源文件: #include <iostream> using namespace std; extern "C" { //指定函数是c语言函数,函数名不包含重载标注 //引用ffmpeg头文件 #include <libavcodec/avcodec.h> } //预处理指令导入库 #pragma comment(lib,"avcodec.…...
数据结构:线索二叉树
目录 1.线索二叉树是什么? 2.包含头文件 3.结点设计 4.接口函数定义 5.接口函数实现 线索二叉树是什么? 线索二叉树(Threaded Binary Tree)是一种对普通二叉树的扩展,它通过在树的某些空指针上添加线索来实现更高效的遍…...
宝塔Linux面板-Docker管理(2024详解)
上一篇文章《宝塔Linux可视化运维面板-详细教程2024》,详细介绍了宝塔Linux面板的详细安装和配置方法。本文详细介绍使用Linux面板管理服务器Docker环境。 目录 1、安装Docker 1.1 在线安装 编辑 1.2 手动安装 1.3 运行状态 1.4 镜像加速 2 应用商店 3 总览 4 容器 …...
【Linux】进程(8):Linux真正是如何调度的
大家好,我是苏貝,本篇博客带大家了解Linux进程(8):Linux真正是如何调度的,如果你觉得我写的还不错的话,可以给我一个赞👍吗,感谢❤️ 目录 之前我们讲过,在大…...
R语言探索与分析14-美国房价及其影响因素分析
一、选题背景 以多元线性回归统计模型为基础,用R语言对美国部分地区房价数据进行建模预测,进而探究提高多元回 归线性模型精度的方法。先对数据进行探索性预处理,随后设置虚拟变量并建模得出预测结果,再使用方差膨胀因子对 多重共…...
golang websocket 数据处理和返回JSON数据示例
golang中websocket数据处理和返回json数据示例, 直接上代码: // author tekintiangmail.com // golang websocket 数据处理和返回JSON数据示例, // 这个函数返回 http.HandlerFunc // 将http请求升级为websocket请求 这个需要依赖第三方包 …...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...
