当前位置: 首页 > news >正文

线性代数|机器学习-P8矩阵低秩近似eckart-young

文章目录

1. SVD奇异值分解

我们知道,对于任意矩阵A来说,我们可以将其通过SVD奇异值分解得到 A = U Σ V T A=U\Sigma V^T A=UΣVT,通过 Σ \Sigma Σ中可以看到只有r个非零的特征值,所以通过矩阵A奇异值分解可得如下表达式:
A = σ 1 u 1 v 1 T + σ 2 u 2 v 2 T + ⋯ + σ n u n v n T , σ 1 ≥ σ 2 ≥ ⋯ ≥ σ r \begin{equation} A=\sigma_1u_1v_1^T+\sigma_2u_2v_2^T+\cdots+\sigma_nu_nv_n^T,\sigma_1\geq \sigma_2\geq\cdots\geq\sigma_r \end{equation} A=σ1u1v1T+σ2u2v2T++σnunvnTσ1σ2σr
A k = σ 1 u 1 v 1 T + σ 2 u 2 v 2 T + ⋯ + σ k u k v k T , σ 1 ≥ σ 2 ≥ ⋯ ≥ σ k \begin{equation} A_k=\sigma_1u_1v_1^T+\sigma_2u_2v_2^T+\cdots+\sigma_ku_kv_k^T,\sigma_1\geq \sigma_2\geq\cdots\geq\sigma_k \end{equation} Ak=σ1u1v1T+σ2u2v2T++σkukvkTσ1σ2σk
A ∼ A k \begin{equation} A\sim A_k \end{equation} AAk

  • 上面的等式里面,我们希望通过前面k项的和来近似矩阵A,这就是主成分分析PCA

2. Eckart-Young

如果矩阵B的秩为 k ,对于矩阵A和B的距离来说,矩阵A与子矩阵 A k A_k Ak(秩为k)的距离小于等于矩阵A与矩阵B之间的距离
在这里插入图片描述

  • 假设我们有如下矩阵
    A = [ 4 0 0 0 0 3 0 0 0 0 2 0 0 0 0 1 ] ; A 2 = [ 4 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 ] ; B = [ 3.5 3.5 0 0 3.5 3.5 0 0 0 0 1.5 1.5 0 0 1.5 1.5 ] \begin{equation} A=\begin{bmatrix} 4&0&0&0\\\\ 0&3&0&0\\\\ 0&0&2&0\\\\ 0&0&0&1 \end{bmatrix};A_2=\begin{bmatrix} 4&0&0&0\\\\ 0&3&0&0\\\\ 0&0&0&0\\\\ 0&0&0&0 \end{bmatrix};B=\begin{bmatrix} 3.5&3.5&0&0\\\\ 3.5&3.5&0&0\\\\ 0&0&1.5&1.5\\\\ 0&0&1.5&1.5 \end{bmatrix} \end{equation} A= 4000030000200001 ;A2= 4000030000000000 ;B= 3.53.5003.53.500001.51.5001.51.5
  • 用python计算 ∣ ∣ A − B ∣ ∣ ≥ ∣ ∣ A − A k ∣ ∣ ||A-B||\geq ||A-A_k|| ∣∣AB∣∣∣∣AAk∣∣
import numpy as npif __name__=="__main__":A=np.array([  [4,0,0,0],[0,3,0,0],[0,0,2,0],[0,0,0,1]],dtype='int16')A2=np.array([  [4,0,0,0],[0,3,0,0],[0,0,0,0],[0,0,0,0]],dtype='int16')B=np.array([  [3.5,3.5,0,0],[3.5,3.5,0,0],[0,0,1.5,1.5],[0,0,1.5,1.5]],dtype='int16')Aa2norm =A-A2AB2norm =A-Bprint(f"A={A}")print(f"A2={A2}")print(f"B={B}")print(f"Aa2norm={np.linalg.norm(Aa2norm,ord=2)}")print(f"AB2norm={np.linalg.norm(AB2norm,ord=2)}")
#A=[[4 0 0 0]
# [0 3 0 0]
# [0 0 2 0]
# [0 0 0 1]]
#A2=[[4 0 0 0]
# [0 3 0 0]
# [0 0 0 0]
# [0 0 0 0]]
#B=[[3 3 0 0]
# [3 3 0 0]
# [0 0 1 1]
# [0 0 1 1]]
#Aa2norm=2.0
#AB2norm=3.54138126514911
  • 结果: ∣ ∣ A − B ∣ ∣ 2 = 3.54 , ∣ ∣ A − A 2 ∣ ∣ = 2.0 → ∣ ∣ A − B ∣ ∣ ≥ ∣ ∣ A − A 2 ∣ ∣ ||A-B||_2=3.54,||A-A_2||=2.0\rightarrow ||A-B||\geq||A-A_2|| ∣∣AB2=3.54,∣∣AA2∣∣=2.0∣∣AB∣∣∣∣AA2∣∣
  • 向量x乘以正交单位矩阵Q后长度不变,正交矩阵相当于将向量旋转,所以长度不变。
    ∣ ∣ x ∣ ∣ 2 = x T x = x T Q T Q x = ( Q x ) T Q x = ∣ ∣ Q x ∣ ∣ 2 \begin{equation} ||x||_2=x^Tx=x^TQ^TQx=(Qx)^TQx=||Qx||_2 \end{equation} ∣∣x2=xTx=xTQTQx=(Qx)TQx=∣∣Qx2
    这就是主成分分析的原理,因为矩阵A里面有很多无用信息,用 A k A_k Ak 来代替 A

2.1 范数

  • 向量 L 1 L_1 L1范数
    ∣ ∣ V ∣ ∣ 1 = ∣ v 1 ∣ + ∣ v 2 ∣ + ⋯ + ∣ v n ∣ \begin{equation} ||V||_1=|v_1|+|v_2|+\cdots+|v_n| \end{equation} ∣∣V1=v1+v2++vn

  • 向量 L 2 L_2 L2范数
    ∣ ∣ V ∣ ∣ 2 = v 1 2 + v 2 2 + ⋯ + v n 2 \begin{equation} ||V||_2=\sqrt{v_1^2+v_2^2+\cdots+v_n^2} \end{equation} ∣∣V2=v12+v22++vn2

  • 向量 L ∞ L_{\infty} L范数
    ∣ ∣ V ∣ ∣ ∞ = m a x ∣ v i ∣ \begin{equation} ||V||_{\infty}=\mathrm{max}|v_i| \end{equation} ∣∣V=maxvi

  • 我们假设在二维平面上,我们就三个范数进行图形形象表达:
    在这里插入图片描述
    在这里插入图片描述

  • 小结,随着范数越大,图形由原来的菱形膨胀到了正方形,这个正方形就是极限了。这个思路真神奇!!!

  • L 1 L_1 L1函数范数跟向量 L 1 L_1 L1范数一样,通过 L 1 L_1 L1函数可以知道一个函数在指定区间内的体量 L 1 L_1 L1函数范数
    L = ∑ i = 1 n ∣ y i − f ( x i ) ∣ \begin{equation} L=\sum_{i=1}^n|y_i-f(x_i)| \end{equation} L=i=1nyif(xi)

  • L 2 L_2 L2函数范数
    L 2 L_2 L2损失函数表示测量和真实值之差的平方,就是我们之前一直用的最小二乘法。真神奇,居然都对上了,同一个问题,不同的角度。
    L = ∑ i = 1 n ( y i − f ( x i ) ) 2 \begin{equation} L=\sum_{i=1}^n(y_i-f(x_i))^2 \end{equation} L=i=1n(yif(xi))2
    矩阵 L 1 L_1 L1范数定义为每一列元素绝对值之和的最大值。具体步骤是:
    1. 对矩阵A的每一列,求每个元素的绝对值之和
    2. 找出所有列和中最大值

  • L 2 L_2 L2矩阵范数定义为矩阵A的最大奇异值,计算步骤:
    1. 计算矩阵A的共轭转置,记为 A H A^H AH,得到 A H A , A A H A^HA,AA^H AHAAAH
    2. 计算矩阵 A A H , A H A AA^H,A^HA AAH,AHA的特征值,求出平方根后求得最大特征值为 L 2 L_2 L2范数

  • Frobenius-norm
    ∣ ∣ A ∣ ∣ F = σ 1 2 + σ 2 2 + ⋯ + σ r 2 \begin{equation} ||A||_F=\sqrt{\sigma_1^2+\sigma_2^2+\cdots+\sigma_r^2} \end{equation} ∣∣AF=σ12+σ22++σr2

  • Nuclear-norm
    ∣ ∣ A ∣ ∣ N = σ 1 + σ 2 + ⋯ + σ r \begin{equation} ||A||_N=\sigma_1+\sigma_2+\cdots+\sigma_r \end{equation} ∣∣AN=σ1+σ2++σr

3. Q A = Q U Σ V T QA=QU\Sigma V^T QA=QUΣVT

对于矩阵A来说,我们可以左乘以一个正交单位矩阵A,其特征值不变
Q A = ( Q U ) Σ V T \begin{equation} QA=(QU)\Sigma V^T \end{equation} QA=(QU)ΣVT

4. 主成分分析图像表示

我们来看看最小二乘法的图像,通过求y方向的最小值和来拟合曲线
L = ∑ i = 1 n ∣ y i − f ( x i ) ∣ → A T A x ^ = A T b → x ^ = ( A T A ) − 1 A T b \begin{equation} L=\sum_{i=1}^n|y_i-f(x_i)|\rightarrow A^TA\hat{x}=A^Tb\rightarrow \hat{x}=(A^TA)^{-1}A^Tb \end{equation} L=i=1nyif(xi)ATAx^=ATbx^=(ATA)1ATb
在这里插入图片描述

  • 主成分分析PCA 是通过先减去样本的均值后,根据点到直线的垂直距离来拟合直线。

相关文章:

线性代数|机器学习-P8矩阵低秩近似eckart-young

文章目录 1. SVD奇异值分解2. Eckart-Young2.1 范数 3. Q A Q U Σ V T QAQU\Sigma V^T QAQUΣVT4. 主成分分析图像表示 1. SVD奇异值分解 我们知道,对于任意矩阵A来说,我们可以将其通过SVD奇异值分解得到 A U Σ V T AU\Sigma V^T AUΣVT&#xff0…...

平面设计神器CorelDRAW2021精简版,你值得拥有!

亲爱的设计师小伙伴们,今天我要为大家种草一款神奇的软件——CorelDRAW平面设计软件2021精简版!🤩✨作为一名专业的图形设计师,我深知一个好工具对于我们的工作有多么重要。而这款软件简直就是我们设计师的救星!&#…...

kafka是什么?

Kafka是一个由Apache软件基金会开发的开源流处理平台,最初由LinkedIn公司开发,使用Scala和Java编写。它是一个高吞吐量的分布式发布订阅消息系统,可以处理消费者在网站中的所有动作流数据,如网页浏览、搜索和其他用户行为等。Kafk…...

ABC351

C 栈的应用 #include<bits/stdc.h>using namespace std;stack<int>stk;int main() {int n;cin>>n;for(int i1;i<n;i){int a;cin>>a;while(!stk.empty()&&astk.top()){stk.pop();a;}stk.push(a);}cout<<stk.size()<<endl;retur…...

base上海,数据科学,数据挖掘,数据分析等岗位求收留

裁员了&#xff0c;base上海&#xff0c;数据科学&#xff0c;数据挖掘&#xff0c;数据分析等岗位&#xff0c;期望30k~40k&#xff0c;求推荐求收留 1&#xff0c;6年数据算法工作&#xff0c;做过指标体系搭建&#xff0c;用户画像&#xff0c;货品定价&#xff0c;社区分析…...

IC元器件

1.电阻&#xff1a; 电阻的作用&#xff1a; 1.与负载串联&#xff1a;做限流分压 2.电阻并联&#xff1a;将小功率电阻并联成大功率&#xff0c;防烧毁 2.电容&#xff1a; 电容就是两块金属板&#xff0b;中间的介质&#xff08;相当于两个人坐在一起加上中间的空气…...

SQL159 每个创作者每月的涨粉率及截止当前的总粉丝量

描述 用户-视频互动表tb_user_video_log iduidvideo_idstart_timeend_timeif_followif_likeif_retweetcomment_id110120012021-09-01 10:00:002021-09-01 10:00:20011NULL210520022021-09-10 11:00:002021-09-10 11:00:30101NULL310120012021-10-01 10:00:002021-10-01 10:00…...

Linux安装MySQL教程【带图文命令巨详细】

巨详细Linux安装MySQL 1、查看是否有自带数据库或残留数据库信息1.1检查残留mysql1.2检查并删除残留mysql依赖1.3检查是否自带mariadb库 2、下载所需MySQL版本&#xff0c;上传至系统指定位置2.1创建目录2.2下载MySQL压缩包 3、安装MySQL3.1创建目录3.2解压mysql压缩包3.3安装解…...

外部排序快速入门详解:基本原理,败者树,置换-选择排序,最佳归并树

文章目录 外部排序1.最基本的外部排序原理2.外部排序的优化2.1 败者树优化方法2.2 置换-选择排序优化方法2.3 最佳归并树 外部排序 为什么要学习外部排序&#xff1f; 答&#xff1a; 在处理数据的过程中&#xff0c;我们需要把磁盘(外存&#xff09;中存储的数据拿到内存中处理…...

人工智能和物联网如何结合

欢迎来到 Papicatch的博客 目录 ​ &#x1f349;引言 &#x1f349;AI与IoT的结合方式 &#x1f348;数据处理和分析 &#x1f34d;实例 &#x1f348;边缘计算 &#x1f34d;实例 &#x1f348;自动化和自主操作 &#x1f34d;实例 &#x1f348;安全和隐私保护 &…...

【JAVASE】JAVA应用案例(下)

一&#xff1a;抢红包 一个大V直播时&#xff0c;发起了抢红包活动&#xff0c;分别有9,666,188,520,99999五个红包。请模拟粉丝来抽奖&#xff0c;按照先来先得&#xff0c;随机抽取&#xff0c;抽完即止&#xff0c;注意&#xff1a;一个红包只能被抽一次&#xff0c;先抽或…...

【面试干货】 B 树与 B+ 树的区别

【面试干货】 B 树与 B 树的区别 1、B 树2、 B 树3、 区别与优缺点比较4、 总结 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 在数据库系统中&#xff0c;B 树和 B 树是常见的索引结构&#xff0c;它们在存储和组织数据方面有着不同的设计…...

Socket编程权威指南(四)彻底解密 Epoll 原理

在上一篇文章中&#xff0c;我们优化了基于 Socket 的网络服务器&#xff0c;从最初的 select/poll 模型进化到了高效的 epoll。很多读者对 epoll 的惊人性能表示极大的兴趣&#xff0c;对它的工作原理也充满了好奇。今天&#xff0c;就让我们一起揭开 epoll 神秘的面纱&#x…...

Windows开始ssh服务+密钥登录+默认启用powershell

文章内所有的命令都在power shell内执行&#xff0c;使用右键单击Windows徽标&#xff0c;选择终端管理员即可打开 Windows下OpenSSH的安装 打开Windows power shell&#xff0c;检查SSH服务的安装状态。会返回SSH客户端和服务器的安装状态&#xff0c;一下是两个都安装成功的…...

实体商铺私域流量打造策略:从引流到转化的全链路解析

在数字化时代&#xff0c;实体商铺面临着前所未有的挑战与机遇。随着线上购物的兴起&#xff0c;传统商铺如何吸引并留住顾客&#xff0c;成为了每个实体店家必须面对的问题。私域流量的打造&#xff0c;正是解决这一问题的关键所在。本文将从引流、留存、转化三个方面&#xf…...

实战 | 通过微调SegFormer改进车道检测效果(数据集 + 源码)

背景介绍 SegFormer&#xff1a;实例分割在自动驾驶汽车技术的快速发展中发挥了关键作用。对于任何在道路上行驶的车辆来说&#xff0c;车道检测都是必不可少的。车道是道路上的标记&#xff0c;有助于区分道路上可行驶区域和不可行驶区域。车道检测算法有很多种&#xff0c;每…...

翻译《The Old New Thing》- Why do messages posted by PostThreadMessage disappear?

Why do messages posted by PostThreadMessage disappear? - The Old New Thing (microsoft.com)https://devblogs.microsoft.com/oldnewthing/20090930-00/?p16553 Raymond Chen 2008年09月30日 为什么 PostThreadMessage 发布的信息会消失&#xff1f; 在显示用户界面的线…...

【深度学习】—— 神经网络介绍

神经网络介绍 本系列主要是吴恩达深度学习系列视频的笔记&#xff0c;传送门&#xff1a;https://www.coursera.org/deeplearning-ai 目录 神经网络介绍神经网络的应用深度学习兴起的原因 神经网络&#xff0c;全称人工神经网络&#xff08;Artificial Neural Network&#xf…...

python-数字黑洞

[题目描述] 给定一个三位数&#xff0c;要求各位不能相同。例如&#xff0c;352是符合要求的&#xff0c;112是不符合要求的。将这个三位数的三个数字重新排列&#xff0c;得到的最大的数&#xff0c;减去得到的最小的数&#xff0c;形成一个新的三位数。对这个新的三位数可以重…...

SpringCloud 负载均衡 spring-cloud-starter-loadbalancer

简述 spring-cloud-starter-loadbalancer 是 Spring Cloud 中的一个组件&#xff0c;它提供了客户端负载均衡的功能。在 Spring Cloud 的早期版本中&#xff0c;Netflix Ribbon 被广泛用作客户端负载均衡器&#xff0c;但随着时间推移和 Netflix Ribbon 进入维护模式&#xff…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...