当前位置: 首页 > news >正文

pytorch 加权CE_loss实现(语义分割中的类不平衡使用)

加权CE_loss和BCE_loss稍有不同

1.标签为long类型,BCE标签为float类型
2.当reduction为mean时计算每个像素点的损失的平均,BCE除以像素数得到平均值,CE除以像素对应的权重之和得到平均值。
在这里插入图片描述

参数配置torch.nn.CrossEntropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction=‘mean’,label_smoothing=0.0)

增加加权的CE_loss代码实现

# 总之, CrossEntropyLoss() = softmax + log + NLLLoss() = log_softmax + NLLLoss(), 具体等价应用如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
import numpy as npclass CrossEntropyLoss2d(nn.Module):def __init__(self, weight=None):super(CrossEntropyLoss2d, self).__init__()self.nll_loss = nn.CrossEntropyLoss(weight, reduction='mean')def forward(self, preds, targets):return self.nll_loss(preds, targets)

语义分割类别计算

class CE_w_loss(nn.Module):def __init__(self,ignore_index=255):super(CE_w_loss, self).__init__()self.ignore_index = ignore_index# self.CE = nn.CrossEntropyLoss(ignore_index=self.ignore_index)def forward(self, outputs, targets):class_num = outputs.shape[1]# print("class_num :",class_num )# # 计算每个类别在整个 batch 中的像素数占比class_pixel_counts = torch.bincount(targets.flatten(), minlength=class_num)  # 假设有class_num个类别class_pixel_proportions = class_pixel_counts.float() / torch.numel(targets)# # 根据类别占比计算权重class_weights = 1.0 / (torch.log(1.02 + class_pixel_proportions)).double()  # 使用对数变换平衡权重# # print("class_weights :",class_weights)## 定义交叉熵损失函数,并使用动态计算的类别权重criterion = nn.CrossEntropyLoss(ignore_index=self.ignore_index,weight= class_weights)# 计算损失loss = criterion(outputs, targets)print(loss.item())  # 打印损失值return lossnp.random.seed(666)pred = np.ones((2, 5, 256,256))seg = np.ones((2, 5, 256, 256)) # 灰度label = np.ones((2, 256, 256))  # 灰度pred = torch.from_numpy(pred)seg = torch.from_numpy(seg).int()  # 灰度label = torch.from_numpy(label).long()ce = CE_w_loss()loss = ce(pred, label)print("loss:",loss.item())

调用库(手动设置权重)

import torch
import torch.nn as nn# 假设有一些模型输出和目标标签
model_output = torch.randn(3, 5)  # 假设有5个类别
target = torch.empty(3, dtype=torch.long).random_(5)# 定义权重
weights = torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0])# 定义交叉熵损失函数,并设置权重
criterion = nn.CrossEntropyLoss(weight=weights)# 计算损失
loss = criterion(model_output, target)
print(loss)

自适应计算权重

import torch
import torch.nn as nn
import numpy as np# 假设我们有一个包含10个样本的批次,每个样本属于4个类别之一
batch_size = 10
num_classes = 4# 随机生成未经过 softmax 的logits输出(网络的最后一层输出)
logits = torch.randn(batch_size, num_classes, requires_grad=True)# 真实的标签(每个样本的类别索引),例如 [0, 2, 1, 3, 0, 0, 1, 2, 3, 3]
labels = torch.tensor([0, 2, 1, 3, 0, 0, 1, 2, 3, 3])# 统计每个类别的频率
class_counts = torch.bincount(labels, minlength=num_classes).float()# 计算每个类别的权重,权重可以为类别频率的倒数
# 为了防止分母为零,这里加一个小的常数epsilon
epsilon = 1e-6
class_weights = 1.0 / (class_counts + epsilon)# 归一化权重,使其和为1
class_weights /= class_weights.sum()print('Class Counts:', class_counts)
print('Class Weights:', class_weights)# 创建带权重的交叉熵损失函数
criterion = nn.CrossEntropyLoss(weight=class_weights)# 计算损失值
loss = criterion(logits, labels)print('Logits:\n', logits)
print('Labels:\n', labels)
print('Weighted Cross-Entropy Loss:', loss.item())# 反向传播梯度
loss.backward()

报错

Weight=torch.from_numpy(np.array([0.1, 0.8, 1.0, 1.0])).float() 报错
Weight=torch.from_numpy(np.array([0.1, 0.8, 1.0, 1.0])).double() 正确

参考:[1]https://blog.csdn.net/CSDN_of_ding/article/details/111515226
[2] https://blog.csdn.net/qq_40306845/article/details/137651442
[3] https://www.zhihu.com/question/400443029/answer/2477658229

相关文章:

pytorch 加权CE_loss实现(语义分割中的类不平衡使用)

加权CE_loss和BCE_loss稍有不同 1.标签为long类型,BCE标签为float类型 2.当reduction为mean时计算每个像素点的损失的平均,BCE除以像素数得到平均值,CE除以像素对应的权重之和得到平均值。 参数配置torch.nn.CrossEntropyLoss(weightNone,…...

【iOS】UI——关于UIAlertController类(警告对话框)

目录 前言关于UIAlertController具体操作及代码实现总结 前言 在UI的警告对话框的学习中,我们发现UIAlertView在iOS 9中已经被废弃,我们找到UIAlertController来代替UIAlertView实现弹出框的功能,从而有了这篇关于UIAlertController的学习笔记…...

django支持https

测试环境,可以用django自带的证书 安装模块 sudo pip3 install django_sslserver服务端https启动 python3 manage.py runsslserver 127.0.0.1:8001https访问 https://127.0.0.1:8001/quota/api/XXX...

算法题day41(补5.27日卡:动态规划01)

一、动态规划基础知识:在动态规划中每一个状态一定是由上一个状态推导出来的。 动态规划五部曲: 1.确定dp数组 以及下标的含义 2.确定递推公式 3.dp数组如何初始化 4.确定遍历顺序 5.举例推导dp数组 debug方式:打印 二、刷题&#xf…...

【附带源码】机械臂MoveIt2极简教程(四)、第一个入门demo

系列文章目录 【附带源码】机械臂MoveIt2极简教程(一)、moveit2安装 【附带源码】机械臂MoveIt2极简教程(二)、move_group交互 【附带源码】机械臂MoveIt2极简教程(三)、URDF/SRDF介绍 【附带源码】机械臂MoveIt2极简教程(四)、第一个入门demo 目录 系列文章目录1. 创…...

基于蚁群算法的二维路径规划算法(matlab)

微♥关注“电击小子程高兴的MATLAB小屋”获得资料 一、理论基础 1、路径规划算法 路径规划算法是指在有障碍物的工作环境中寻找一条从起点到终点、无碰撞地绕过所有障碍物的运动路径。路径规划算法较多,大体上可分为全局路径规划算法和局部路径规划算法两大类。其…...

政务云参考技术架构

行业优势 总体架构 政务云平台技术框架图,由机房环境、基础设施层、支撑软件层及业务应用层组成,在运维、安全和运营体系的保障下,为政务云使用单位提供统一服务支撑。 功能架构 标准双区隔离 参照国家电子政务规范,打造符合标准的…...

android 13 aosp 预置so库

展讯对应的main.mk配置 device/sprd/qogirn**/ums***/product/***_native/main.mk $(call inherit-product-if-exists, vendor/***/build.mk)vendor/***/build.mk PRODUCT_PACKAGES \libtestvendor///Android.bp cc_prebuilt_library_shared{name:"libtest",srcs:…...

mongo篇---mongoDB Compass连接数据库

mongo篇—mongoDB Compass连接数据库 mongoDB笔记 – 第一条 一、mongoDB Compass连接远程数据库,配置URL。 URL: mongodb://username:passwordhost:port点击connect即可。 注意:host最好使用名称,防止出错连接超时。...

基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真,输出收敛曲线以及三维曲面最高点搜索结果。 2.测试软件版本以及运行结果展示 MATLAB2022A版本…...

前端js解析websocket推送的gzip压缩json的Blob数据

主要依赖插件pako https://www.npmjs.com/package/pako 1、安装 npm install pako 2、使用, pako.inflate(reader.result, {to: "string"}) 解压后的string 对象,需要JSON.parse转成json this.ws.onmessage (evt) > {console.log("…...

【wiki知识库】06.文档管理接口的实现--SpringBoot后端部分

目录 一、🔥今日目标 二、🎈SpringBoot部分类的添加 1.调用MybatisGenerator 2.添加DocSaveParam 3.添加DocQueryVo 三、🚆后端新增接口 3.1添加DocController 3.1.1 /all/{ebokId} 3.1.2 /doc/save 3.1.3 /doc/delete/{idStr} …...

c,c++,go语言字符串的演进

#include <stdio.h> #include <string.h> int main() {char str[] {a,b,c,\0,d,d,d};printf("string:[%s], len:%d \n", str, strlen(str) );return 0; } string:[abc], len:3 c语言只有数组的概念&#xff0c;数组本身没有长度的概念&#xff0c;需…...

vue-cli 快速入门

vue-cli &#xff08;目前向Vite发展&#xff09; 介绍&#xff1a;Vue-cli 是Vue官方提供一个脚手架&#xff0c;用于快速生成一个Vue的项目模板。 Vue-cli提供了如下功能&#xff1a; 统一的目录结构 本地调试 热部署 单元测试 集成打包上线 依赖环境&#xff1a;NodeJ…...

机器人--矩阵运算

两个矩阵相乘的含义 P点在坐标系B中的坐标系PB&#xff0c;需要乘以B到A到变换矩阵TAB。 M点在B坐标系中的位姿MB&#xff0c;怎么计算M在A中的坐标系&#xff1f; 两个矩阵相乘 一个矩阵*另一个矩阵的逆矩阵...

期末复习【汇总】

期末复习【汇总】 前言版权推荐期末复习【汇总】最后 前言 2024-5-12 20:52:17 截止到今天&#xff0c;所有期末复习的汇总 以下内容源自《【创作模板】》 仅供学习交流使用 版权 禁止其他平台发布时删除以下此话 本文首次发布于CSDN平台 作者是CSDN日星月云 博客主页是ht…...

【IM即时通讯】MQTT协议的详解(3)- CONNACK Packet

【IM即时通讯】MQTT协议的详解&#xff08;3&#xff09;- CONNACK Packet 文章目录 【IM即时通讯】MQTT协议的详解&#xff08;3&#xff09;- CONNACK Packet前言说明一、固定同步详解、可变头部详解总结 前言 关于所有的类型的数据示例已经在上面一篇博客说完&#xff1a; …...

Linux - 深入理解/proc虚拟文件系统:从基础到高级

文章目录 Linux /proc虚拟文件系统/proc/self使用 /proc/self 的优势/proc/self 的使用案例案例1&#xff1a;获取当前进程的状态信息案例2&#xff1a;获取当前进程的命令行参数案例3&#xff1a;获取当前进程的内存映射案例4&#xff1a;获取当前进程的文件描述符 /proc中进程…...

Django DeleteView视图

Django 的 DeleteView 是一个基于类的视图&#xff0c;用于处理对象的删除操作。 1&#xff0c;添加视图函数 Test/app3/views.py from django.shortcuts import render# Create your views here. from .models import Bookfrom django.views.generic import ListView class B…...

代码杂谈 之 pyspark如何做相似度计算

在 PySpark 中&#xff0c;计算 DataFrame 两列向量的差可以通过使用 UDF&#xff08;用户自定义函数&#xff09;和 Vector 类型完成。这里有一个示例&#xff0c;展示了如何使用 PySpark 的 pyspark.ml.linalg.Vectorspyspark.sql.functions.udf 来实现这一功能&#xff1a…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下&#xff1a; avformat_open_input 精简后的代码如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...

Linux 下 DMA 内存映射浅析

序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存&#xff0c;但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程&#xff0c;可以参考这篇文章&#xff0c;我觉得写的非常…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...

用鸿蒙HarmonyOS5实现国际象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的国际象棋小游戏的完整实现代码&#xff0c;使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├── …...