当前位置: 首页 > news >正文

ConcurrentHashMap如何保证线程安全?

ConcurrentHashMap 是 HashMap 的多线程版本,HashMap 在并发操作时会有各种问题,比如死循环问题、数据覆盖等问题。而这些问题,只要使用 ConcurrentHashMap 就可以完美解决了,那问题来了,ConcurrentHashMap 是如何保证线程安全的?它的底层又是如何实现的?接下来我们一起来看。

JDK 1.7 底层实现

ConcurrentHashMap 在不同的 JDK 版本中实现是不同的,**在 JDK 1.7 中它使用的是数组加链表的形式实现的,而数组又分为:大数组 Segment 和小数组 HashEntry。**大数组 Segment 可以理解为 MySQL 中的数据库,而每个数据库(Segment)中又有很多张表 HashEntry,每个 HashEntry 中又有多条数据,这些数据是用链表连接的,如下图所示:

图片

JDK 1.7 线程安全实现

了解了 ConcurrentHashMap 的底层实现,再看它的线程安全实现就比较简单了。接下来,我们通过添加元素 put 方法,来看 JDK 1.7 中 ConcurrentHashMap 是如何保证线程安全的,具体实现源码如下:

final V put(K key, int hash, V value, boolean onlyIfAbsent) {// 在往该 Segment 写入前,先确保获取到锁HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value); V oldValue;try {// Segment 内部数组HashEntry<K,V>[] tab = table;int index = (tab.length - 1) & hash;HashEntry<K,V> first = entryAt(tab, index);for (HashEntry<K,V> e = first;;) {if (e != null) {K k;// 更新已有值...}else {// 放置 HashEntry 到特定位置,如果超过阈值则进行 rehash// 忽略其他代码...}}} finally {// 释放锁unlock();}return oldValue;
}

从上述源码我们可以看出,Segment 本身是基于 ReentrantLock 实现的加锁和释放锁的操作,这样就能保证多个线程同时访问 ConcurrentHashMap 时,同一时间只有一个线程能操作相应的节点,这样就保证了 ConcurrentHashMap 的线程安全了。也就是说 ConcurrentHashMap 的线程安全是建立在 Segment 加锁的基础上的,所以我们把它称之为分段锁或片段锁,如下图所示:

图片

JDK 1.8 底层实现

在 JDK 1.7 中,ConcurrentHashMap 虽然是线程安全的,但因为它的底层实现是数组 + 链表的形式,所以在数据比较多的情况下访问是很慢的,因为要遍历整个链表,而 JDK 1.8 则使用了数组 + 链表/红黑树的方式优化了 ConcurrentHashMap 的实现,具体实现结构如下:

图片

链表升级为红黑树的规则:当链表长度大于 8,并且数组的长度大于 64 时,链表就会升级为红黑树的结构。

PS:ConcurrentHashMap 在 JDK 1.8 虽然保留了 Segment 的定义,但这仅仅是为了保证序列化时的兼容性,不再有任何结构上的用处了。

JDK 1.8 线程安全实现

在 JDK 1.8 中 ConcurrentHashMap 使用的是 CAS + volatile 或 synchronized 的方式来保证线程安全的,它的核心实现源码如下:

final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException();int hash = spread(key.hashCode());int binCount = 0;for (Node<K,V>[] tab = table;;) {Node<K,V> f; int n, i, fh; K fk; V fv;if (tab == null || (n = tab.length) == 0)tab = initTable();else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // 节点为空// 利用 CAS 去进行无锁线程安全操作,如果 bin 是空的if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))break; }else if ((fh = f.hash) == MOVED)tab = helpTransfer(tab, f);else if (onlyIfAbsent&& fh == hash&& ((fk = f.key) == key || (fk != null && key.equals(fk)))&& (fv = f.val) != null)return fv;else {V oldVal = null;synchronized (f) {// 细粒度的同步修改操作... }}// 如果超过阈值,升级为红黑树if (binCount != 0) {if (binCount >= TREEIFY_THRESHOLD)treeifyBin(tab, i);if (oldVal != null)return oldVal;break;}}}addCount(1L, binCount);return null;
}

从上述源码可以看出,在 JDK 1.8 中,添加元素时首先会判断容器是否为空,如果为空则使用 volatile 加 CAS 来初始化。如果容器不为空则根据存储的元素计算该位置是否为空,如果为空则利用 CAS 设置该节点;如果不为空则使用 synchronize 加锁,遍历桶中的数据,替换或新增节点到桶中,最后再判断是否需要转为红黑树,这样就能保证并发访问时的线程安全了。我们把上述流程简化一下,我们可以简单的认为在 JDK 1.8 中,ConcurrentHashMap 是在头节点加锁来保证线程安全的,锁的粒度相比 Segment 来说更小了,发生冲突和加锁的频率降低了,并发操作的性能就提高了。而且 JDK 1.8 使用的是红黑树优化了之前的固定链表,那么当数据量比较大的时候,查询性能也得到了很大的提升,从之前的 O(n) 优化到了 O(logn) 的时间复杂度,具体加锁示意图如下:

图片

总结

ConcurrentHashMap 在 JDK 1.7 时使用的是数据加链表的形式实现的,其中数组分为两类:大数组 Segment 和小数组 HashEntry,而加锁是通过给 Segment 添加 ReentrantLock 锁来实现线程安全的。而 JDK 1.8 中 ConcurrentHashMap 使用的是数组+链表/红黑树的方式实现的,它是通过 CAS 或 synchronized 来实现线程安全的,并且它的锁粒度更小,查询性能也更高。

相关文章:

ConcurrentHashMap如何保证线程安全?

ConcurrentHashMap 是 HashMap 的多线程版本&#xff0c;HashMap 在并发操作时会有各种问题&#xff0c;比如死循环问题、数据覆盖等问题。而这些问题&#xff0c;只要使用 ConcurrentHashMap 就可以完美解决了&#xff0c;那问题来了&#xff0c;ConcurrentHashMap 是如何保证…...

spring属性注入的不细心错误

属性注入问题 个人博客:www.zgtsky.top 同个的对象&#xff0c;在一个类中注入成功&#xff0c;在另一个类中注入为null 问题&#xff1a;在检测各个需要的类上已经打上注解后&#xff0c;出现了在一个类A1中注入B属性成功了&#xff0c;但在另一个类A2中注入B属性却失败了。…...

JVM 根可达算法

Java中的垃圾 Java中"垃圾"通常指的是不再被程序使用和引用的对象&#xff0c;具体表现在没有被栈、JNI指针和永久代对象所引用的对象。Java作为一种面向对象的编程语言&#xff0c;它使用自动内存管理机制&#xff0c;其中垃圾收集器负责检测和回收不再被程序引用的…...

Kafka基础架构与核心概念?有哪些应用场景?

Kafka简介 Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。架构特点是分区、多副本、多生产者、多订阅者,性能特点主要是高吞吐,低时延。 Kafka主要设计…...

内网不能访问网站怎么办?

内网不能访问网站是在网络使用过程中常见的问题之一。当我们使用局域网连接时&#xff0c;有时候会遇到无法访问特定网站的情况。这可能是因为网络环境复杂&#xff0c;或者受到了某些限制。本篇文章将介绍一种解决内网不能访问网站问题的产品——天联组网。 天联组网是一款由…...

python-求f(x,n)

[题目描述] 输入&#xff1a; 输入 &#x1d465;和 &#x1d45b;。输出&#xff1a; 函数值&#xff0c;保留两位小数。样例输入1 4.2 10 样例输出1 3.68 来源/分类&#xff08;难度系数&#xff1a;一星&#xff09; 完整代码如下&#xff1a; x,nmap(eval,input().split(…...

java值jsp语法笔记

1 JSP注释 1.1 显示注释 显示注释会出现在生成的HTML文档中&#xff0c;对用户可见。 <!-- 这是一个HTML显示注释 --> 1.2 隐式注释 隐式注释不会出现在生成的HTML文档中&#xff0c;对用户不可见。 <%-- 这是一个JSP隐式注释 --%> 2 JSP脚本元素 2.1 局部…...

057、PyCharm 运行代码报错:Error Please select a valid Python interpreter

当我们在PyCharm运行代码时&#xff0c;提示如下图错误&#xff1a; 那么问题通常是由于PyCharm未正确配置Python解释器引起的。 我们只需按以下步骤重新配置Python解释器即可&#xff1a; 打开PyCharm设置&#xff1a; 在菜单栏中的点击 “File” -> “Settings”&#xf…...

Java实现图书管理系统

一、引言 本篇介绍了一个简易的图书管理系统&#xff0c;面向管理员和普通用户分别给出了不同的菜单&#xff0c;实现了一些基本的图书操作功能&#xff0c;包括图书的增删查改、借阅、归还等 二、图书管理系统框架 图书管理系统&#xff0c;顾名思义&#xff0c;管理的是图…...

使用静态方法接受对象参数

我们先来看一个例子 public class MyInteger { private int value; // 构造函数 public MyInteger(int value) { this.value value; } // 实例方法 public boolean isEven() { return value % 2 0; } // 静态方法接受int参数 public static boolean isEvenStatic…...

cocos creator如何使用cryptojs加解密(及引入方法)

cocos creator如何使用cryptojs加解密&#xff08;及引入方法&#xff09; 如果想转请评论留个言并注明原博 Sclifftop 13805064305 阿浚 cocos creator如何使用cryptojs加解密&#xff08;及引入方法&#xff09; 步骤 获取库 1. npm install crypto-js -g&#xff0c;加不加…...

安装台式电脑网卡驱动

安装电脑网卡驱动 1. 概述2. 具体方法2.1 先确定主板型号2.2 详细操作步骤如下2.2.1 方法一2.2.2 方法二2.2 主流主板官网地址 结束语 1. 概述 遇到重装系统后、或者遇到网卡驱动出现问题没有网络时&#xff0c;当不知道怎么办时&#xff0c;以下的方法&#xff0c;可以作为一…...

JavaEE-多线程(1)

这篇文章&#xff0c;我们将介绍进程、线程的相关概念以及进程和线程的区别&#xff0c;下篇文章我们将使用Java来编写多线程的代码 进程&#xff1a; 进程&#xff08;Process&#xff09;是操作系统中资源分配的基本单位&#xff0c;它是一个正在运行的程序的实例。进程包括…...

【计算机视觉】人脸算法之图像处理基础知识(五)

图像的几何变换 3.图像的旋转 图像的旋转就是让图像按照某一点旋转到指定的角度。需要确定3个参数&#xff1a;图像的旋转中心、旋转角度和缩放因子。在openv中通过getRotationMatrix2D()函数来实现图像的旋转。 import cv2 import numpy as npimgpath "images/img1.j…...

工业 web4.0 的 UI 风格,独树一帜

工业 web4.0 的 UI 风格&#xff0c;独树一帜...

BSP驱动教程-CAN/CANFD/CANopen知识点总结分享

学习知识点整理&#xff1a; CAN 总线的前世今生&#xff1a; https://www.armbbs.cn/forum.php?modviewthread&tid104480 wikibai百科CAN总线&#xff1a; https://en.wikipedia.org/wiki/CAN_bus 瑞萨CAN入门教程&#xff1a; https://www.armbbs.cn/forum.php?m…...

微服务之远程调用

常见的远程调用方式 RPC&#xff1a;Remote Produce Call远程过程调用&#xff0c;类似的还有 。自定义数据格式&#xff0c;基于原生TCP通信&#xff0c;速度快&#xff0c;效率高。早期的webservice&#xff0c;现在热门的dubbo &#xff08;12不再维护、17年维护权交给apac…...

Opencv数一数有多少个水晶贴纸?

1.目标-数出有多少个贴纸 好久没更新博客了&#xff0c;最近家里小朋友在一张A3纸上贴了很多水晶贴纸&#xff0c;要让我帮他数有多少个&#xff0c;看上去有点多&#xff0c;贴的也比较随意&#xff0c;于是想着使用Opencv来识别一下有多少个。 原图如下&#xff1a; 代码…...

AI Agent智能应用从0到1定制开发(完结)

在数字化时代的浪潮中&#xff0c;人工智能&#xff08;AI&#xff09;代理智能应用如同星辰般璀璨&#xff0c;引领着技术革新的潮流。从零开始定制开发一款AI Agent智能应用&#xff0c;就像是在无垠的宇宙中绘制一颗新星的轨迹&#xff0c;每一步都充满了挑战与创新的火花。…...

事件驱动架构:新时代的软件设计范式

引言 在现代软件开发中&#xff0c;随着系统复杂度的增加和实时响应需求的提升&#xff0c;传统的单体架构和同步调用模型逐渐显露出其局限性。事件驱动架构&#xff08;Event-Driven Architecture, EDA&#xff09;作为一种高度解耦、灵活性强的架构设计模式&#xff0c;越来…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...