神经网络学习2
张量(Tensor)是深度学习和科学计算中的基本数据结构,用于表示多维数组。张量可以看作是一个更广义的概念,涵盖了标量、向量、矩阵以及更高维度的数据结构。具体来说,张量的维度可以是以下几种形式:
标量(0维张量):
一个单一的数值。
例如:3.0。
向量(1维张量):
一维数组,即一个数值的列表。
例如:[1.0, 2.0, 3.0]。
矩阵(2维张量):
二维数组,即一个数值的表格。
在 PyTorch 中,张量可以通过 torch.tensor 函数创建。
创建标量张量:
import torch
scalar = torch.tensor(3.0)
print(scalar) # tensor(3.0)
向量张良
vector = torch.tensor([1.0, 2.0, 3.0])
print(vector) # tensor([1., 2., 3.])
创建矩阵张量:
matrix = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
print(matrix) # tensor([[1., 2.], [3., 4.]])
张量有许多有用的属性和方法,例如:
形状(Shape)
print(matrix.shape) # torch.Size([2, 2])
数据类型(Data Type):
print(matrix.dtype) # torch.float32
设备(Device):
print(matrix.device) # 例如:cpu 或 cuda:0
torch.nn是一个实例化的使用,torch.nn.functrion是方法的使用。两个都很好用
卷积操作
卷积核:卷积核是一个小的矩阵,用于在输入数据上执行卷积操作。它的大小通常比输入数据小得多,例如 3x3、5x5 或 7x7。
滤波器:滤波器是卷积核的另一个名称,它与卷积核的功能相同。
卷积操作是将卷积核应用到输入数据的每个位置,通过滑动窗口的方式逐元素相乘并求和,生成一个新的输出值。以下是卷积操作的步骤:
将卷积核放在输入数据的一个位置上。
逐元素相乘并求和,得到一个新的输出值。
将卷积核移动到下一个位置,重复上述步骤,直到遍历整个输入数据。
卷积核的作用
特征提取:卷积核通过对局部区域的操作,可以提取不同层次的特征,例如边缘、纹理、颜色等。
参数共享:卷积核在整个输入数据上共享,使得模型参数减少,提高计算效率。
空间不变性:卷积核能够捕捉输入数据的空间特征,不受位置变化的影响。
在卷积神经网络中,通常会有多个卷积核,每个卷积核提取不同的特征。因此,卷积层的输出不仅包含空间维度(高度和宽度),还包含深度维度(通道数)。例如,一个卷积层可能有 32 个 3x3 的卷积核,输入是一个 RGB 图像(具有 3 个通道),输出将是 32 个特征图。
权重参数本来就是随机初始化,之后根据优化方法会一轮一轮的不断向最优解逼近
开始数值就是一个初始化数值,然后通过训练慢慢优化,最后得到合适的数值
注意:torchvision.transforms.ToTensor 是用于将 PIL 图像或 NumPy 数组转换为张量的,但它需要一个特定的输入格式。对于 NumPy 数组,可以直接使用 torch.tensor 进行转换。
典型的卷积神经网络期望输入是一个四维张量,形状为 (batch_size, channels, height, width)。
其中,batch_size 表示每个批次的样本数量,channels 表示输入图像的通道数(对于灰度图像通道数为 1,对于彩色图像通道数为 3),height 和 width 表示图像的高度和宽度。
下面是一个简单的卷积操作
import torch
import torch.nn.functional as F
import numpy as np
inputtensor = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]], dtype=torch.float32)
# 使用 NumPy 创建卷积核
np_kernel = np.random.randn(3, 3)# 将 NumPy 数组转换为 PyTorch 张量
kernel = torch.tensor(np_kernel, dtype=torch.float32)inputtensor=torch.reshape(inputtensor,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))
print(kernel.shape)
print(inputtensor.shape)output=F.conv2d(inputtensor,kernel,stride=1)
print(output)
output2=F.conv2d(inputtensor,kernel,stride=2)
print(output2)
padding即在输入的周围进行填充一圈再进行卷积操作,空白部分默认视为0
import torch
import torch.nn.functional as F
import numpy as np
inputtensor = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]], dtype=torch.float32)
# 使用 NumPy 创建卷积核
np_kernel = np.random.randn(3, 3)# 将 NumPy 数组转换为 PyTorch 张量
kernel = torch.tensor(np_kernel, dtype=torch.float32)inputtensor=torch.reshape(inputtensor,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))
print(kernel.shape)
print(inputtensor.shape)output=F.conv2d(inputtensor,kernel,stride=1)
print(output)
output2=F.conv2d(inputtensor,kernel,stride=2)
print(output2)
output3=F.conv2d(inputtensor,kernel,stride=1,padding=1)
print(output3)
相关文章:

神经网络学习2
张量(Tensor)是深度学习和科学计算中的基本数据结构,用于表示多维数组。张量可以看作是一个更广义的概念,涵盖了标量、向量、矩阵以及更高维度的数据结构。具体来说,张量的维度可以是以下几种形式: 标量&am…...

Spring Boot整合Redis通过Zset数据类型+定时任务实现延迟队列
😄 19年之后由于某些原因断更了三年,23年重新扬帆起航,推出更多优质博文,希望大家多多支持~ 🌷 古之立大事者,不惟有超世之才,亦必有坚忍不拔之志 🎐 个人CSND主页——Mi…...

Android入门第69天-AndroidStudio中的Gradle使用国内镜像最强教程
背景 AndroidStudio默认连接的是dl.google的gadle仓库。 每次重新build时: 下载速度慢;等待了半天总时build faild;build到一半connection timeout;即使使用了魔法也难以一次build好;这严重影响了我们的学习、开发效率。 当前网络上的使用国内镜像的教程不全 网上的教程…...

深入浅出 Qt 中 QListView 的设计思想,并掌握大规模、高性能列表的实现方法
在大规模列表控件的显示需求中,必须解决2个问题才能获得较好的性能: 第一就是数据存在哪里, 避免出现数据的副本。第二就是如何展示Item,如何复用或避免创建大量的Item控件。 在QListView体系里,QAbstractListModel解…...

课设--学生成绩管理系统
欢迎来到 Papicatch的博客 文章目录 🍉技术核心 🍉引言 🍈标识 🍈背景 🍈项目概述 🍈 文档概述 🍉可行性分析的前提 🍈项目的要求 🍈项目的目标 🍈…...

MySQL性能分析
一、查看执行频率 sql执行频率,执行下述指令可以看到select,update,delete等操作的次数 show global status like Com_______; 具体我们在终端登录mysql看下,使用下述命令登录mysql,并输入命令 mysql -u 用户名 -p 上述查询,删…...

为什么要学习Flink系统管理及优化课程?
Flink系统是一种流式处理框架,能够高效地处理大规模数据流。然而,要确保Flink系统的正常运行,就需要进行系统管理和优化。系统管理是指对Flink集群的监控、调度和维护,而系统优化则是指通过调整参数和优化算法,提高Fli…...
把本机的bash构建到docker镜像里面
最近突发奇想,想把本机的bash放到docker镜像里面,接下来看操作。 获取bash以及依赖 [rootbogon ~]# cat get_lib_info.sh #!/bin/bash# 函数:显示帮助信息 show_help() {echo "Usage: $(basename "$0") -h -f <file>…...

【数据分析】推断统计学及Python实现
各位大佬好 ,这里是阿川的博客,祝您变得更强 个人主页:在线OJ的阿川 大佬的支持和鼓励,将是我成长路上最大的动力 阿川水平有限,如有错误,欢迎大佬指正 Python 初阶 Python–语言基础与由来介绍 Python–…...

探索交互的本质:从指令到界面的演进与Linux基础指令的深入剖析
目录 1.指令 vs 界面//选读 1.1交互的需求 满足需求的第一阶段-指令 满足需求的第二阶段-界面 1.2 指令 和 界面交互 区别 2.操作系统介绍 2.1 举例说明 驱动软件层 2.2 为什么要有操作系统? 0x03 为什么要进行指令操作? 3.Linux基本指令 l…...
uniapp vue分享功能集成
分享必须通过button设置open-type"share"拉起 <view class"img horizontal center" style"margin-right: 20rpx;"><image class"img" :src"src" click"onTapClick(xxx)" style"z-index: 1;" …...

软件工程实务:软件产品
目录 1、软件产品的基本概念 2、软件工程是什么? 为什么产生软件工程? 软件工程是做什么的? 3、定制软件和软件产品的工程比较 4 、软件产品的运行模式 5、软件产品开发时需要考虑的两个基本技术因素 6、产品愿景 7、软件产品管理 8、产品原型设计 9、小结…...

带侧边栏布局:带导航的网页
目录 任务描述 相关知识 HTML(HyperText Markup Language) CSS(Cascading Style Sheets): 编程要求 任务描述 在本关中,你的任务是创建一个带侧边栏和导航的网页布局。这种布局通常用于网站或应用程序,其中侧边栏…...
react学习-redux快速体验
1.redux是用于和react搭配使用的状态管理工具,类似于vue的vuex。redux可以不和任何框架绑定,独立使用 2.使用步骤 (1)定义一个reducer函数(根据当前想要做的修改返回一个新的状态) (2࿰…...

基于flask的网站如何使用https加密通信-问题记录
文章目录 项目场景:问题1问题描述原因分析解决步骤解决方案 问题2问题描述原因分析解决方案 参考文章 项目场景: 项目场景:基于flask的网站使用https加密通信一文中遇到的问题记录 问题1 问题描述 使用下面的命令生成自签名的SSL/TLS证书和…...

记C#优化接口速度过程
前提摘要 首先这个项目是接手的前一任先写的项目,接手后,要求对项目一些速度相对较慢的接口进行优化,到第一个速度比较慢的接口后,发现单接口耗时4-8秒,是的,请求同一个接口,在参数不变的情况下…...

windows环境如何运行python/java后台服务器进程而不显示控制台窗口
1.通常我们在windows环境下使用Java或Python语言编写服务器程序,都希望他在后台运行,不要显示黑乎乎的控制台窗口: 2.有人写了一个bat文件: cd /d D:\lottery\server && python .\main.py 放到了开机自启动里,可是开机的…...

记周末百度云防御CC攻击事件
今天一早,收到百度智能云短信提醒,一位客户的网站遭遇了CC攻击。 主机吧赶紧登陆客户网站查看,是否正常,看是否需要通知客户。 结果打开正常,看情况并没什么影响,那就等攻击结果了再看吧。 下午的时候&am…...
vue中v-bind控制class和style
当使用v-bind指令控制class和style时,可以通过动态绑定的方式根据不同的条件来添加或移除class,以及改变元素的样式。 1. 控制class 通过v-bind:class可以动态绑定class属性。可以使用对象语法、数组语法或者计算属性来实现。 对象语法:使用…...
【面试经典150题】【双指针】392. 判断子序列
题目链接 https://leetcode.cn/problems/is-subsequence/?envTypestudy-plan-v2&envIdtop-interview-150 题解思路 首先如果s的长度大于t的长度,那么s肯定不是t的子序列如果s的长度等于t的长度,那么st的情况下s才是t的子序列如果s的长度小于t的长…...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
NPOI操作EXCEL文件 ——CAD C# 二次开发
缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!
目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...

对象回调初步研究
_OBJECT_TYPE结构分析 在介绍什么是对象回调前,首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例,用_OBJECT_TYPE这个结构来解析它,0x80处就是今天要介绍的回调链表,但是先不着急,先把目光…...