神经网络学习2
张量(Tensor)是深度学习和科学计算中的基本数据结构,用于表示多维数组。张量可以看作是一个更广义的概念,涵盖了标量、向量、矩阵以及更高维度的数据结构。具体来说,张量的维度可以是以下几种形式:
标量(0维张量):
一个单一的数值。
例如:3.0。
向量(1维张量):
一维数组,即一个数值的列表。
例如:[1.0, 2.0, 3.0]。
矩阵(2维张量):
二维数组,即一个数值的表格。
在 PyTorch 中,张量可以通过 torch.tensor 函数创建。
创建标量张量:
import torch
scalar = torch.tensor(3.0)
print(scalar) # tensor(3.0)
向量张良
vector = torch.tensor([1.0, 2.0, 3.0])
print(vector) # tensor([1., 2., 3.])
创建矩阵张量:
matrix = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
print(matrix) # tensor([[1., 2.], [3., 4.]])
张量有许多有用的属性和方法,例如:
形状(Shape)
print(matrix.shape) # torch.Size([2, 2])
数据类型(Data Type):
print(matrix.dtype) # torch.float32
设备(Device):
print(matrix.device) # 例如:cpu 或 cuda:0
torch.nn是一个实例化的使用,torch.nn.functrion是方法的使用。两个都很好用
卷积操作

卷积核:卷积核是一个小的矩阵,用于在输入数据上执行卷积操作。它的大小通常比输入数据小得多,例如 3x3、5x5 或 7x7。
滤波器:滤波器是卷积核的另一个名称,它与卷积核的功能相同。
卷积操作是将卷积核应用到输入数据的每个位置,通过滑动窗口的方式逐元素相乘并求和,生成一个新的输出值。以下是卷积操作的步骤:
将卷积核放在输入数据的一个位置上。
逐元素相乘并求和,得到一个新的输出值。
将卷积核移动到下一个位置,重复上述步骤,直到遍历整个输入数据。
卷积核的作用
特征提取:卷积核通过对局部区域的操作,可以提取不同层次的特征,例如边缘、纹理、颜色等。
参数共享:卷积核在整个输入数据上共享,使得模型参数减少,提高计算效率。
空间不变性:卷积核能够捕捉输入数据的空间特征,不受位置变化的影响。
在卷积神经网络中,通常会有多个卷积核,每个卷积核提取不同的特征。因此,卷积层的输出不仅包含空间维度(高度和宽度),还包含深度维度(通道数)。例如,一个卷积层可能有 32 个 3x3 的卷积核,输入是一个 RGB 图像(具有 3 个通道),输出将是 32 个特征图。
权重参数本来就是随机初始化,之后根据优化方法会一轮一轮的不断向最优解逼近
开始数值就是一个初始化数值,然后通过训练慢慢优化,最后得到合适的数值
注意:torchvision.transforms.ToTensor 是用于将 PIL 图像或 NumPy 数组转换为张量的,但它需要一个特定的输入格式。对于 NumPy 数组,可以直接使用 torch.tensor 进行转换。
典型的卷积神经网络期望输入是一个四维张量,形状为 (batch_size, channels, height, width)。
其中,batch_size 表示每个批次的样本数量,channels 表示输入图像的通道数(对于灰度图像通道数为 1,对于彩色图像通道数为 3),height 和 width 表示图像的高度和宽度。
下面是一个简单的卷积操作
import torch
import torch.nn.functional as F
import numpy as np
inputtensor = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]], dtype=torch.float32)
# 使用 NumPy 创建卷积核
np_kernel = np.random.randn(3, 3)# 将 NumPy 数组转换为 PyTorch 张量
kernel = torch.tensor(np_kernel, dtype=torch.float32)inputtensor=torch.reshape(inputtensor,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))
print(kernel.shape)
print(inputtensor.shape)output=F.conv2d(inputtensor,kernel,stride=1)
print(output)
output2=F.conv2d(inputtensor,kernel,stride=2)
print(output2)

padding即在输入的周围进行填充一圈再进行卷积操作,空白部分默认视为0
import torch
import torch.nn.functional as F
import numpy as np
inputtensor = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]], dtype=torch.float32)
# 使用 NumPy 创建卷积核
np_kernel = np.random.randn(3, 3)# 将 NumPy 数组转换为 PyTorch 张量
kernel = torch.tensor(np_kernel, dtype=torch.float32)inputtensor=torch.reshape(inputtensor,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))
print(kernel.shape)
print(inputtensor.shape)output=F.conv2d(inputtensor,kernel,stride=1)
print(output)
output2=F.conv2d(inputtensor,kernel,stride=2)
print(output2)
output3=F.conv2d(inputtensor,kernel,stride=1,padding=1)
print(output3)
相关文章:
神经网络学习2
张量(Tensor)是深度学习和科学计算中的基本数据结构,用于表示多维数组。张量可以看作是一个更广义的概念,涵盖了标量、向量、矩阵以及更高维度的数据结构。具体来说,张量的维度可以是以下几种形式: 标量&am…...
Spring Boot整合Redis通过Zset数据类型+定时任务实现延迟队列
😄 19年之后由于某些原因断更了三年,23年重新扬帆起航,推出更多优质博文,希望大家多多支持~ 🌷 古之立大事者,不惟有超世之才,亦必有坚忍不拔之志 🎐 个人CSND主页——Mi…...
Android入门第69天-AndroidStudio中的Gradle使用国内镜像最强教程
背景 AndroidStudio默认连接的是dl.google的gadle仓库。 每次重新build时: 下载速度慢;等待了半天总时build faild;build到一半connection timeout;即使使用了魔法也难以一次build好;这严重影响了我们的学习、开发效率。 当前网络上的使用国内镜像的教程不全 网上的教程…...
深入浅出 Qt 中 QListView 的设计思想,并掌握大规模、高性能列表的实现方法
在大规模列表控件的显示需求中,必须解决2个问题才能获得较好的性能: 第一就是数据存在哪里, 避免出现数据的副本。第二就是如何展示Item,如何复用或避免创建大量的Item控件。 在QListView体系里,QAbstractListModel解…...
课设--学生成绩管理系统
欢迎来到 Papicatch的博客 文章目录 🍉技术核心 🍉引言 🍈标识 🍈背景 🍈项目概述 🍈 文档概述 🍉可行性分析的前提 🍈项目的要求 🍈项目的目标 🍈…...
MySQL性能分析
一、查看执行频率 sql执行频率,执行下述指令可以看到select,update,delete等操作的次数 show global status like Com_______; 具体我们在终端登录mysql看下,使用下述命令登录mysql,并输入命令 mysql -u 用户名 -p 上述查询,删…...
为什么要学习Flink系统管理及优化课程?
Flink系统是一种流式处理框架,能够高效地处理大规模数据流。然而,要确保Flink系统的正常运行,就需要进行系统管理和优化。系统管理是指对Flink集群的监控、调度和维护,而系统优化则是指通过调整参数和优化算法,提高Fli…...
把本机的bash构建到docker镜像里面
最近突发奇想,想把本机的bash放到docker镜像里面,接下来看操作。 获取bash以及依赖 [rootbogon ~]# cat get_lib_info.sh #!/bin/bash# 函数:显示帮助信息 show_help() {echo "Usage: $(basename "$0") -h -f <file>…...
【数据分析】推断统计学及Python实现
各位大佬好 ,这里是阿川的博客,祝您变得更强 个人主页:在线OJ的阿川 大佬的支持和鼓励,将是我成长路上最大的动力 阿川水平有限,如有错误,欢迎大佬指正 Python 初阶 Python–语言基础与由来介绍 Python–…...
探索交互的本质:从指令到界面的演进与Linux基础指令的深入剖析
目录 1.指令 vs 界面//选读 1.1交互的需求 满足需求的第一阶段-指令 满足需求的第二阶段-界面 1.2 指令 和 界面交互 区别 2.操作系统介绍 2.1 举例说明 驱动软件层 2.2 为什么要有操作系统? 0x03 为什么要进行指令操作? 3.Linux基本指令 l…...
uniapp vue分享功能集成
分享必须通过button设置open-type"share"拉起 <view class"img horizontal center" style"margin-right: 20rpx;"><image class"img" :src"src" click"onTapClick(xxx)" style"z-index: 1;" …...
软件工程实务:软件产品
目录 1、软件产品的基本概念 2、软件工程是什么? 为什么产生软件工程? 软件工程是做什么的? 3、定制软件和软件产品的工程比较 4 、软件产品的运行模式 5、软件产品开发时需要考虑的两个基本技术因素 6、产品愿景 7、软件产品管理 8、产品原型设计 9、小结…...
带侧边栏布局:带导航的网页
目录 任务描述 相关知识 HTML(HyperText Markup Language) CSS(Cascading Style Sheets): 编程要求 任务描述 在本关中,你的任务是创建一个带侧边栏和导航的网页布局。这种布局通常用于网站或应用程序,其中侧边栏…...
react学习-redux快速体验
1.redux是用于和react搭配使用的状态管理工具,类似于vue的vuex。redux可以不和任何框架绑定,独立使用 2.使用步骤 (1)定义一个reducer函数(根据当前想要做的修改返回一个新的状态) (2࿰…...
基于flask的网站如何使用https加密通信-问题记录
文章目录 项目场景:问题1问题描述原因分析解决步骤解决方案 问题2问题描述原因分析解决方案 参考文章 项目场景: 项目场景:基于flask的网站使用https加密通信一文中遇到的问题记录 问题1 问题描述 使用下面的命令生成自签名的SSL/TLS证书和…...
记C#优化接口速度过程
前提摘要 首先这个项目是接手的前一任先写的项目,接手后,要求对项目一些速度相对较慢的接口进行优化,到第一个速度比较慢的接口后,发现单接口耗时4-8秒,是的,请求同一个接口,在参数不变的情况下…...
windows环境如何运行python/java后台服务器进程而不显示控制台窗口
1.通常我们在windows环境下使用Java或Python语言编写服务器程序,都希望他在后台运行,不要显示黑乎乎的控制台窗口: 2.有人写了一个bat文件: cd /d D:\lottery\server && python .\main.py 放到了开机自启动里,可是开机的…...
记周末百度云防御CC攻击事件
今天一早,收到百度智能云短信提醒,一位客户的网站遭遇了CC攻击。 主机吧赶紧登陆客户网站查看,是否正常,看是否需要通知客户。 结果打开正常,看情况并没什么影响,那就等攻击结果了再看吧。 下午的时候&am…...
vue中v-bind控制class和style
当使用v-bind指令控制class和style时,可以通过动态绑定的方式根据不同的条件来添加或移除class,以及改变元素的样式。 1. 控制class 通过v-bind:class可以动态绑定class属性。可以使用对象语法、数组语法或者计算属性来实现。 对象语法:使用…...
【面试经典150题】【双指针】392. 判断子序列
题目链接 https://leetcode.cn/problems/is-subsequence/?envTypestudy-plan-v2&envIdtop-interview-150 题解思路 首先如果s的长度大于t的长度,那么s肯定不是t的子序列如果s的长度等于t的长度,那么st的情况下s才是t的子序列如果s的长度小于t的长…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...
NPOI操作EXCEL文件 ——CAD C# 二次开发
缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...
