当前位置: 首页 > news >正文

神经网络学习2

张量(Tensor)是深度学习和科学计算中的基本数据结构,用于表示多维数组。张量可以看作是一个更广义的概念,涵盖了标量、向量、矩阵以及更高维度的数据结构。具体来说,张量的维度可以是以下几种形式:
标量(0维张量):
一个单一的数值。
例如:3.0。
向量(1维张量):
一维数组,即一个数值的列表。
例如:[1.0, 2.0, 3.0]。
矩阵(2维张量):
二维数组,即一个数值的表格。

在 PyTorch 中,张量可以通过 torch.tensor 函数创建。
创建标量张量:

import torch
scalar = torch.tensor(3.0)
print(scalar)  # tensor(3.0)

向量张良

vector = torch.tensor([1.0, 2.0, 3.0])
print(vector)  # tensor([1., 2., 3.])

创建矩阵张量:

matrix = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
print(matrix)  # tensor([[1., 2.], [3., 4.]])

张量有许多有用的属性和方法,例如:
形状(Shape)

print(matrix.shape)  # torch.Size([2, 2])

数据类型(Data Type):

print(matrix.dtype)  # torch.float32

设备(Device):

print(matrix.device)  # 例如:cpu 或 cuda:0

torch.nn是一个实例化的使用,torch.nn.functrion是方法的使用。两个都很好用

卷积操作
在这里插入图片描述

卷积核:卷积核是一个小的矩阵,用于在输入数据上执行卷积操作。它的大小通常比输入数据小得多,例如 3x3、5x5 或 7x7。
滤波器:滤波器是卷积核的另一个名称,它与卷积核的功能相同。

卷积操作是将卷积核应用到输入数据的每个位置,通过滑动窗口的方式逐元素相乘并求和,生成一个新的输出值。以下是卷积操作的步骤:
将卷积核放在输入数据的一个位置上。
逐元素相乘并求和,得到一个新的输出值。
将卷积核移动到下一个位置,重复上述步骤,直到遍历整个输入数据。

卷积核的作用
特征提取:卷积核通过对局部区域的操作,可以提取不同层次的特征,例如边缘、纹理、颜色等。
参数共享:卷积核在整个输入数据上共享,使得模型参数减少,提高计算效率。
空间不变性:卷积核能够捕捉输入数据的空间特征,不受位置变化的影响。

在卷积神经网络中,通常会有多个卷积核,每个卷积核提取不同的特征。因此,卷积层的输出不仅包含空间维度(高度和宽度),还包含深度维度(通道数)。例如,一个卷积层可能有 32 个 3x3 的卷积核,输入是一个 RGB 图像(具有 3 个通道),输出将是 32 个特征图。

权重参数本来就是随机初始化,之后根据优化方法会一轮一轮的不断向最优解逼近
开始数值就是一个初始化数值,然后通过训练慢慢优化,最后得到合适的数值

注意:torchvision.transforms.ToTensor 是用于将 PIL 图像或 NumPy 数组转换为张量的,但它需要一个特定的输入格式。对于 NumPy 数组,可以直接使用 torch.tensor 进行转换。

典型的卷积神经网络期望输入是一个四维张量,形状为 (batch_size, channels, height, width)。
其中,batch_size 表示每个批次的样本数量,channels 表示输入图像的通道数(对于灰度图像通道数为 1,对于彩色图像通道数为 3),height 和 width 表示图像的高度和宽度。
下面是一个简单的卷积操作

import torch
import torch.nn.functional as F
import numpy as np
inputtensor = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]], dtype=torch.float32)
# 使用 NumPy 创建卷积核
np_kernel = np.random.randn(3, 3)# 将 NumPy 数组转换为 PyTorch 张量
kernel = torch.tensor(np_kernel, dtype=torch.float32)inputtensor=torch.reshape(inputtensor,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))
print(kernel.shape)
print(inputtensor.shape)output=F.conv2d(inputtensor,kernel,stride=1)
print(output)
output2=F.conv2d(inputtensor,kernel,stride=2)
print(output2)

在这里插入图片描述
padding即在输入的周围进行填充一圈再进行卷积操作,空白部分默认视为0

import torch
import torch.nn.functional as F
import numpy as np
inputtensor = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]], dtype=torch.float32)
# 使用 NumPy 创建卷积核
np_kernel = np.random.randn(3, 3)# 将 NumPy 数组转换为 PyTorch 张量
kernel = torch.tensor(np_kernel, dtype=torch.float32)inputtensor=torch.reshape(inputtensor,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))
print(kernel.shape)
print(inputtensor.shape)output=F.conv2d(inputtensor,kernel,stride=1)
print(output)
output2=F.conv2d(inputtensor,kernel,stride=2)
print(output2)
output3=F.conv2d(inputtensor,kernel,stride=1,padding=1)
print(output3)

相关文章:

神经网络学习2

张量(Tensor)是深度学习和科学计算中的基本数据结构,用于表示多维数组。张量可以看作是一个更广义的概念,涵盖了标量、向量、矩阵以及更高维度的数据结构。具体来说,张量的维度可以是以下几种形式: 标量&am…...

Spring Boot整合Redis通过Zset数据类型+定时任务实现延迟队列

😄 19年之后由于某些原因断更了三年,23年重新扬帆起航,推出更多优质博文,希望大家多多支持~ 🌷 古之立大事者,不惟有超世之才,亦必有坚忍不拔之志 🎐 个人CSND主页——Mi…...

Android入门第69天-AndroidStudio中的Gradle使用国内镜像最强教程

背景 AndroidStudio默认连接的是dl.google的gadle仓库。 每次重新build时: 下载速度慢;等待了半天总时build faild;build到一半connection timeout;即使使用了魔法也难以一次build好;这严重影响了我们的学习、开发效率。 当前网络上的使用国内镜像的教程不全 网上的教程…...

深入浅出 Qt 中 QListView 的设计思想,并掌握大规模、高性能列表的实现方法

在大规模列表控件的显示需求中,必须解决2个问题才能获得较好的性能: 第一就是数据存在哪里, 避免出现数据的副本。第二就是如何展示Item,如何复用或避免创建大量的Item控件。 在QListView体系里,QAbstractListModel解…...

课设--学生成绩管理系统

欢迎来到 Papicatch的博客 文章目录 🍉技术核心 🍉引言 🍈标识 🍈背景 🍈项目概述 🍈 文档概述 🍉可行性分析的前提 🍈项目的要求 🍈项目的目标 🍈…...

MySQL性能分析

一、查看执行频率 sql执行频率,执行下述指令可以看到select,update,delete等操作的次数 show global status like Com_______; 具体我们在终端登录mysql看下,使用下述命令登录mysql,并输入命令 mysql -u 用户名 -p 上述查询,删…...

为什么要学习Flink系统管理及优化课程?

Flink系统是一种流式处理框架,能够高效地处理大规模数据流。然而,要确保Flink系统的正常运行,就需要进行系统管理和优化。系统管理是指对Flink集群的监控、调度和维护,而系统优化则是指通过调整参数和优化算法,提高Fli…...

把本机的bash构建到docker镜像里面

最近突发奇想&#xff0c;想把本机的bash放到docker镜像里面&#xff0c;接下来看操作。 获取bash以及依赖 [rootbogon ~]# cat get_lib_info.sh #!/bin/bash# 函数&#xff1a;显示帮助信息 show_help() {echo "Usage: $(basename "$0") -h -f <file>…...

【数据分析】推断统计学及Python实现

各位大佬好 &#xff0c;这里是阿川的博客&#xff0c;祝您变得更强 个人主页&#xff1a;在线OJ的阿川 大佬的支持和鼓励&#xff0c;将是我成长路上最大的动力 阿川水平有限&#xff0c;如有错误&#xff0c;欢迎大佬指正 Python 初阶 Python–语言基础与由来介绍 Python–…...

探索交互的本质:从指令到界面的演进与Linux基础指令的深入剖析

目录 1.指令 vs 界面//选读 1.1交互的需求 满足需求的第一阶段-指令 满足需求的第二阶段-界面 1.2 指令 和 界面交互 区别 2.操作系统介绍 2.1 举例说明 驱动软件层 2.2 为什么要有操作系统&#xff1f; 0x03 为什么要进行指令操作&#xff1f; 3.Linux基本指令 l…...

uniapp vue分享功能集成

分享必须通过button设置open-type"share"拉起 <view class"img horizontal center" style"margin-right: 20rpx;"><image class"img" :src"src" click"onTapClick(xxx)" style"z-index: 1;" …...

软件工程实务:软件产品

目录 1、软件产品的基本概念 2、软件工程是什么&#xff1f; 为什么产生软件工程? 软件工程是做什么的? 3、定制软件和软件产品的工程比较 4 、软件产品的运行模式 5、软件产品开发时需要考虑的两个基本技术因素 6、产品愿景 7、软件产品管理 8、产品原型设计 9、小结…...

带侧边栏布局:带导航的网页

目录 任务描述 相关知识 HTML(HyperText Markup Language) CSS&#xff08;Cascading Style Sheets&#xff09;&#xff1a; 编程要求 任务描述 在本关中&#xff0c;你的任务是创建一个带侧边栏和导航的网页布局。这种布局通常用于网站或应用程序&#xff0c;其中侧边栏…...

react学习-redux快速体验

1.redux是用于和react搭配使用的状态管理工具&#xff0c;类似于vue的vuex。redux可以不和任何框架绑定&#xff0c;独立使用 2.使用步骤 &#xff08;1&#xff09;定义一个reducer函数&#xff08;根据当前想要做的修改返回一个新的状态&#xff09; &#xff08;2&#xff0…...

基于flask的网站如何使用https加密通信-问题记录

文章目录 项目场景&#xff1a;问题1问题描述原因分析解决步骤解决方案 问题2问题描述原因分析解决方案 参考文章 项目场景&#xff1a; 项目场景&#xff1a;基于flask的网站使用https加密通信一文中遇到的问题记录 问题1 问题描述 使用下面的命令生成自签名的SSL/TLS证书和…...

记C#优化接口速度过程

前提摘要 首先这个项目是接手的前一任先写的项目&#xff0c;接手后&#xff0c;要求对项目一些速度相对较慢的接口进行优化&#xff0c;到第一个速度比较慢的接口后&#xff0c;发现单接口耗时4-8秒&#xff0c;是的&#xff0c;请求同一个接口&#xff0c;在参数不变的情况下…...

windows环境如何运行python/java后台服务器进程而不显示控制台窗口

1.通常我们在windows环境下使用Java或Python语言编写服务器程序&#xff0c;都希望他在后台运行&#xff0c;不要显示黑乎乎的控制台窗口&#xff1a; 2.有人写了一个bat文件: cd /d D:\lottery\server && python .\main.py 放到了开机自启动里&#xff0c;可是开机的…...

记周末百度云防御CC攻击事件

今天一早&#xff0c;收到百度智能云短信提醒&#xff0c;一位客户的网站遭遇了CC攻击。 主机吧赶紧登陆客户网站查看&#xff0c;是否正常&#xff0c;看是否需要通知客户。 结果打开正常&#xff0c;看情况并没什么影响&#xff0c;那就等攻击结果了再看吧。 下午的时候&am…...

vue中v-bind控制class和style

当使用v-bind指令控制class和style时&#xff0c;可以通过动态绑定的方式根据不同的条件来添加或移除class&#xff0c;以及改变元素的样式。 1. 控制class 通过v-bind:class可以动态绑定class属性。可以使用对象语法、数组语法或者计算属性来实现。 对象语法&#xff1a;使用…...

【面试经典150题】【双指针】392. 判断子序列

题目链接 https://leetcode.cn/problems/is-subsequence/?envTypestudy-plan-v2&envIdtop-interview-150 题解思路 首先如果s的长度大于t的长度&#xff0c;那么s肯定不是t的子序列如果s的长度等于t的长度&#xff0c;那么st的情况下s才是t的子序列如果s的长度小于t的长…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...