C/C++函数指针、C#委托是什么?
函数指针
#include<stdio.h>//声明函数指针
typedef int(*Calc)(int a, int b);
int Add(int a, int b)
{return a + b;
}
int Sub(int a, int b) {return a - b;
}int main() {Calc funcPoint1 = &Add;Calc funcPoint2 = ⋐int x = 120;int y = 140;int z = 0;z = Add(x, y);z = funcPoint1(x, y);printf("%d+%d=%d\n", x, y, z);z = Sub(x, y);z = funcPoint2(x, y);printf("%d-%d=%d\n", x, y, z);system("pause");}
一切皆地址
变量(数据):是以某个地址为起点中的一段内存中所存储的值;
函数(算法):是以函数名为地址起点的一段内存中所存储的一组机器语言指令;
C#中委托是什么?
委托(delegate)是函数指针的‘升级版’;
委托的简单使用
- Action委托
- Func委托
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;namespace FunctionPointerExampleCsharp
{class Program{static void Main(string[] args){Calculator ca = new Calculator();Action action = new Action(ca.Report);ca.Report();action.Invoke();action();Func<int, int, int> func = new Func<int, int, int>(ca.Add);Func<int, int, int> func2 = new Func<int, int, int>(ca.Sub);int result=func.Invoke(12, 34);Console.WriteLine(result);result=func2.Invoke(123, 34);Console.WriteLine(result);result =func(12, 34);Console.WriteLine(result);result =func2(123, 34);Console.WriteLine(result);}}class Calculator{public void Report(){Console.WriteLine("Hello,Tom!");}public int Add(int a, int b){return a + b;}public int Sub(int a, int b){return a - b;}}
}相关文章:
C/C++函数指针、C#委托是什么?
函数指针 #include<stdio.h>//声明函数指针 typedef int(*Calc)(int a, int b); int Add(int a, int b) {return a b; } int Sub(int a, int b) {return a - b; }int main() {Calc funcPoint1 &Add;Calc funcPoint2 ⋐int x 120;int y 140;int z 0;z …...
红队攻防渗透技术实战流程:组件安全:JacksonFastJsonXStream
红队攻防渗透实战 1. 组件安全1.1 J2EE-组件Jackson-本地demo&CVE1.1.1 代码执行 (CVE-2020-8840)1.1.2 代码执行(CVE-2020-35728)1.2 J2EE-组件FastJson-本地demo&CVE1.2.1 FastJson <= 1.2.241.2.2 FastJson <= 1.2.471.2.3 FastJson <= 1.2.801.3 J2EE-组…...
Perl 语言学习进阶
一、如何深入 要深入学习Perl语言的库和框架,可以按照以下步骤进行: 了解Perl的核心模块:Perl有许多核心模块,它们提供了许多常用的功能。了解这些模块的功能和用法是深入学习Perl的第一步。一些常用的核心模块包括:S…...
LangGraph实战:从零分阶打造人工智能航空客服助手
❝ 通过本指南,你将学习构建一个专为航空公司设计的客服助手,它将协助用户查询旅行信息并规划行程。在此过程中,你将掌握如何利用LangGraph的中断机制、检查点技术以及更为复杂的状态管理功能,来优化你的助手工具,同时…...
R可视化:R语言基础图形合集
R语言基础图形合集 欢迎大家关注全网生信学习者系列: WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2 基础图形可视化 数据分析的图形可视化是了解数据分布、波动和相关性等属性必…...
mysql导入sql文件失败及解决措施
1.报错找不到表 1.1 原因 表格创建失败,编码问题mysql8相较于mysql5出现了新的编码集 1.2解决办法: 使用vscode打开sql文件ctrlh,批量替换,替换到你所安装mysql支持的编码集。 2.timestmp没有设置默认值 Error occured at:20…...
JS:获取鼠标点击位置
一、获取鼠标在目标元素中的点击位置 getClickPos.ts: export const getClickPos (e: MouseEvent) > {return {x: e.offsetX,y: e.offsetY,}; };二、获取鼠标在页面中的点击位置 getClickPos.ts: export const getPageClickPos (e: MouseEvent) > {return {x: e.pa…...
使用开源的zip.cpp和unzip.cpp实现压缩包的创建与解压(附源码)
目录 1、使用场景 2、压缩包的创建 3、压缩包的解压 4、CloseZipZ和CloseZipU两接口的区别...
npm 异常:peer eslint@“>=1.6.0 <7.0.0“ from eslint-loader@2.2.1
node 用16版本 npm install npm6.14.15 -g将版本降级到6...
Docker|了解容器镜像层(2)
引言 容器非常神奇。它们允许简单的进程表现得像虚拟机。在这种优雅的底层是一组模式和实践,最终使一切运作起来。在设计的根本是层。层是存储和分发容器化文件系统内容的基本方式。这种设计既出人意料地简单,同时又非常强大。在今天的帖子[1]中…...
使用Python爬取temu商品与评论信息
【🏠作者主页】:吴秋霖 【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Python与爬虫领域研究与开发工作! 【&…...
mybatis学习--自定义映射resultMap
1.1、resultMap处理字段和属性的映射关系 如果字段名和实体类中的属性名不一致的情况下,可以通过resultMap设置自定义映射。 常规写法 /***根据id查询员工信息* param empId* return*/ Emp getEmpByEmpId(Param("empId") Integer empId);<select id…...
Elasticsearch之写入原理以及调优
1、ES 的写入过程 1.1 ES支持四种对文档的数据写操作 create:如果在PUT数据的时候当前数据已经存在,则数据会被覆盖,如果在PUT的时候加上操作类型create,此时如果数据已存在则会返回失败,因为已经强制指定了操作类型…...
python中装饰器的用法
最近发现装饰器是一个非常有意思的东西,很高级! 允许你在不修改函数或类的源代码的情况下,为它们添加额外的功能或修改它们的行为。装饰器本质上是一个接受函数作为参数的可调用对象(通常是函数或类),并返…...
php实现一个简单的MySQL分页
一、案例演示: 二、php 代码 <?php $servername "localhost"; // MySQL服务器名称或IP地址 $username "root"; // MySQL用户名 $password "123456"; // MySQL密码 $dbname "test"; // 要连接…...
算法训练营day23补签
题目1:530. 二叉搜索树的最小绝对差 - 力扣(LeetCode) class Solution { public:int reslut INT_MAX;TreeNode* pre NULL;void trackingback(TreeNode* node) {if(node NULL) return;trackingback(node->left);if(pre ! NULL) {reslut…...
国密SM2JS加密后端解密
1.前端加密 前端加密开源库 sm-crypto 1.1 传统web,下载 sm-crypto 进行打包为 dist/sm2.js 相关打包命令 npm install --save sm-crypto npm install npm run prepublish在web页面引用打包后的文件 <script type"text/javascript" src"<%path %>…...
Cheat Engine.exe修改植物大战僵尸阳光与冷却
Cheat Engine.exe修改植物大战僵尸阳光与冷却 打开Cheat Engine.exe和植物大战僵尸,点CE中文件下面红框位置,选择植物大战僵尸,点击打开 修改冷却: 等冷却完毕,首次扫描0安放植物,再次扫描变动值等冷却完…...
python内置模块之queue(队列)用法
queue是python3的内置模块,创建堆栈队列,用来处理多线程通信,队列对象构造方法如下: queue.Queue(maxsize0) 是先进先出(First In First Out: FIFO)队列。 入参 maxsize 是一个整数,用于设置…...
Spring Security——结合JWT实现令牌的验证与授权
目录 JWT(JSON Web Token) 项目总结 新建一个SpringBoot项目 pom.xml PayloadDto JwtUtil工具类 MyAuthenticationSuccessHandler(验证成功处理器) JwtAuthenticationFilter(自定义token过滤器) W…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
