当前位置: 首页 > news >正文

【C语言】数据结构-二叉树

主页:114514的代码大冒险

qq:2188956112(欢迎小伙伴呀hi✿(。◕ᴗ◕。)✿ )

Gitee:庄嘉豪 (zhuang-jiahaoxxx) - Gitee.com

引入

我们之前已经学过线性数据结构,今天我们将介绍非线性数据结构----

树是一种非线性的数据结构,它是由nn>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

望文生义,这个数据结构肯定与现实中的树, 有着一定的联系,如图:

 数据结构中的树它看起来像树枝,也想树的根部

树的概念

· 有一个特殊的结点,称为根结点,根节点没有前驱结点
· 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1T2……Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
因此,树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
如图:

树的相关概念

节点的度:一个节点含有的子树的个数称为该节点的度;如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点;如上图:BCHI...等节点为叶节点
非终端节点或分支节点:度不为0的节点;如上图:DEFG...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;如上图:AB的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;如上图:BA的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点;如上图:BC是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度;如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次;如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:HI互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由mm>0)棵互不相交的树的集合称为森林;

树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法

概念图:

 树在实际中的运用(表示文件系统的目录树结构)

文件目录:

 公司内部功能安排

二叉树(特殊的树)

一棵二叉树是结点的一个有限集合,该合:
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图可以看出:
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:

这些都不重要

你只需要知道二叉树的每个节点最多两个孩子

可以没有孩子,也可以只有一个孩子

另外在二叉树中

左孩子和右孩子是有差异的

现实中的二叉树

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1,则它就是满二叉树。

2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1n的结点一一对应时称之为完全二叉树。要注意的是满二叉树是一种特殊的完全二叉树。

说人话:

就是说如果除了最底下那一排(所谓的叶子节点)其他的节点都有两个孩子

我们就称之为满二叉树

 那么什么是完全二叉树呢

就是除了树的倒数第二排之外,其他节点都有两个孩子

如图:

二叉树的性质

说了一大堆,能看懂多少算多少

我来说几个比较可能用到的点

只要是树,有两个孩子的节点始终比没有孩子的节点的数量少一

 完全二叉树的坐标规律如右图所示

(完全二叉树中) 我们假使某节点这个下标为i,那么它的父亲就是

(i-1)/2 ,左孩子(如果有的话)为2*i+1,右孩子为左孩子坐标加1

另外还有就是这个完全二叉树的层数问题

除开最后一层外,第一层节点的数量为2^0,第二次为2^1第三次为2^2

第n层为2^(n-1),

如此满二叉树的节点数量为2^n - 1个

hhh,非满二叉树的节点数量则为前n-1层的节点数量+最后一层的节点数

我想,这个时候,在知道二叉树的节点的数量前提下

求出二叉树的深度,也就是层数不是什么困难的事情了


总结

这就是今天的树的概念讲解

这部分内容不需要太过焦虑

这些概念现在只是稍微有个大概就可以

我们在接下来的学习中会反复提到

相关文章:

【C语言】数据结构-二叉树

主页&#xff1a;114514的代码大冒险 qq:2188956112&#xff08;欢迎小伙伴呀hi✿(。◕ᴗ◕。)✿ &#xff09; Gitee&#xff1a;庄嘉豪 (zhuang-jiahaoxxx) - Gitee.com 引入 我们之前已经学过线性数据结构&#xff0c;今天我们将介绍非线性数据结构----树 树是一种非线性的…...

c++中std::condition_variable最全用法归纳

前言 建议阅读以下文章前需先对建立 std::thread 多线程与std::mutex 锁有一定程度的熟悉 std::thread最全用法归纳 std::mutex最全用法归纳 概括 使用 std::condition_variable 的 wait 会把目前的线程 thread 停下来并且等候事件通知&#xff0c;而在另一个线程中可以使用…...

Python数据可视化:数据关系图表可视化

目录 1、散点图 1.1、趋势显示的二维散点图 1.2、分布显示的二维散点图 1.3、散点曲线图...

Urho3D约定

Urho3D使用以下约定和原则&#xff1a; 左手坐标系。正X、Y和Z轴指向右侧、上方和前方&#xff0c;正旋转为顺时针。度用于角度。顺时针顶点定义正面。音频音量指定为0.0&#xff08;静音&#xff09;到1.0&#xff08;全音量&#xff09;路径名使用斜杠而不是反斜杠。调用操作…...

python数据结构-列表,元组

列表 列表是Python中最通用的数据类型&#xff0c;可以写成方括号之间的逗号分隔值(项目)列表。 使用列表的重要事项是&#xff0c;列表中的项目不必是相同的类型。也就是说一个列表中的项目(元素)可以是数字&#xff0c;字符串&#xff0c;数组&#xff0c;字典等甚至是列表类…...

Properties类读配置文件、修改配置文件

Properties类简介(1)Properties类是专门用于读写配置文件的集合类(2)配置文件的后缀名为.properties,内容格式为:# 可以用“#”作为注释 键值 键值**注意:**键值对不需要有空格,值不需要用引号一起来。默认类型是String。键、值不可以是null(3)Properties类的方法可查找api文档…...

图解LeetCode——剑指 Offer 24. 反转链表

一、题目 定义一个函数&#xff0c;输入一个链表的头节点&#xff0c;反转该链表并输出反转后链表的头节点。 二、示例 示例: 【输入】 1->2->3->4->5->NULL 【输出】 5->4->3->2->1->NULL 限制&#xff1a; 0 < 节点个数 < 5000 三、…...

【C语言】“指针的运算”、“指针与数组”

文章目录一、指针运算1.指针 - 整数2.指针-指针3.指针关系运算二、指针与数组三、二级指针四、指针数组完结一、指针运算 指针可以进行整数&#xff0c;指针-指针&#xff0c;还有关系运算&#xff0c;其他的运算会被编译器阻止。 1.指针 - 整数 对指针进行的时候一定要注意不…...

Linux高级命令之查找文件命令

查找文件命令学习目标能够说出查找文件使用的命令1. find命令及选项的使用命令说明find在指定目录下查找文件(包括目录)find命令选项:选项说明-name根据文件名(包括目录名)字查找find命令及选项的效果图:2. find命令结合通配符的使用通配符:是一种特殊语句&#xff0c;主要有星…...

PyCharm+Docker:打造最舒适的深度学习炼丹炉

九、PyCharmDocker&#xff1a;打造最舒适的深度学习炼丹炉 安装docker&#xff1a; 如何在 Ubuntu 22.04 LTS 中安装 Docker 和 Docker Compose https://zhuanlan.zhihu.com/p/547169542 修改Linux硬盘卷标&#xff1a; ntfs文件系统&#xff1a;https://blog.csdn.net/n…...

【mock】手把手带你用mock写自定义接口+mock常用语法

mock自定义接口完整流程 官网语法规范:https://github.com/nuysoft/Mock/wiki/Syntax-Specification 首先: 要有一个项目,我这里是vue3项目,以下从vue3项目搭建开始,已搭建好的请直接看2 1.空目录下新建vue3项目 运行创建项目命令&#xff1a; 在bash中:(文件路径处输入cm…...

2023 年腾讯云服务器CVM快速配置购买教程,新手上云必备!

腾讯云服务器快速配置购买教程是新手必备的上云教程。主机教程网在本文中以腾讯云服务器为例&#xff0c;给大家带来一个完整的、手把手教学的服务器购买流程。助力快速完成服务器的购买、配置、以及网站的搭建&#xff0c;给新手节省宝贵的时间&#xff0c;避免采坑&#xff0…...

opencv显示图像

大家好&#xff0c;我是csdn的博主&#xff1a;lqj_本人 这是我的个人博客主页&#xff1a; lqj_本人的博客_CSDN博客-微信小程序,前端,python领域博主lqj_本人擅长微信小程序,前端,python,等方面的知识https://blog.csdn.net/lbcyllqj?spm1011.2415.3001.5343哔哩哔哩欢迎关注…...

C++:类和对象(中)

文章目录1 类的6个默认成员函数2 构造函数2.1 概念2.2 特性3 析构函数3.1 概念3.2 特性4 拷贝构造函数4.1 概念4.2 特性5 赋值运算符重载5.1 运算符重载5.2 赋值运算符重载5.3 前置重载和后置重载6 日期类的实现7 const成员8 取地址及const取地址操作符重载1 类的6个默认成员函…...

53. 最大子数组和

文章目录题目描述暴力法动态规划法分治法参考文献题目描述 给你一个整数数组 nums &#xff0c;请你找出一个具有最大和的连续子数组&#xff08;子数组最少包含一个元素&#xff09;&#xff0c;返回其最大和。 子数组 是数组中的一个连续部分。 示例 1&#xff1a; 输入&…...

基于Java+SpringBoot+SpringCloud+Vue前后端分离医院管理系统设计与实现

博主介绍&#xff1a;✌全网粉丝3W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建、毕业项目实战、项目定制✌ 博主作品&#xff1a;《微服务实战》专栏是本人的实战经验总结&#xff0c;《S…...

QT基础入门【环境配置篇】linux桌面QT开发环境的构建以及问题解决

目录 一、下载QT的安装包 二、安装 1.执行以下命令开始安装 2.选择配置 三、启动...

Linux系统之部署企业内部静态导航页

Linux系统之部署企业内部静态导航页 一、本次实践目的二、检查本地系统环境1.检查系统版本2.检查内核版本三、下载静态导航页资源包1.创建下载目录2.下载资源包四、安装apache服务1.安装httpd2.复制网页文件3.重启httpd服务4.检查httpd服务状态五、访问导航页六、修改导航页网站…...

2023备战金三银四,Python自动化软件测试面试宝典合集(四)

接上篇&#xff1a;11、点击塞钱进红包&#xff0c;选择使用新卡付款&#xff0c;按照流程添加新卡&#xff0c;此时同样需要考虑金额>新卡余额&#xff0c;金额<新卡余额&#xff0c;金额新卡余额三种情况12、使用指纹确认付款(正确的/不正确的指纹)13、使用密码确认付款…...

算法训练营 day43 动态规划 不同路径 不同路径 II

算法训练营 day43 动态规划 不同路径 不同路径 II 不同路径 62. 不同路径 - 力扣&#xff08;LeetCode&#xff09; 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...